Designing Programs for Tables

1 February 2024

We won't cover everything in class!
You need to follow along with the assigned readings.
Practice active reading:
Keep Pyret open and try examples.
Take notes.
In lab and on assignments, you will be expected to try things that may only be in the readings - or may be new altogether.

Lab and homework are additional opportunities for learning!

DONT

Think of the quiz as a check-in to see how well you understand the basics of what we've been doing before we get to Exam 1.

Tables and functional programming

We've seen we can
select certain rows using filter-with and
sort the rows a table with order-by,
but these functions don't change the original table!

Just as the expression $2+3$ doesn't change the value of $\mathbf{2}$ or of $\mathbf{3}$, functions that take a table as input don't change the original table.

Instead, they return a new table.

This is a paradigm called functional programming.
If you have experience working in other languages, this may seem strange, but it can be extremely useful!

We'll explore the idea of functional programming more over the coming weeks.

Loading tabular data

Step o: Get data

Step o: Get data

Step 1: Make a spreadsheet

Untitled spreadsheet
File Edit View Insert Format Data Tools Extensions Help

A1:A176 - P Player,Team,Pos,G,MP,G,GS,MP,FG,FGA,FG\%,3P,3PA,3P\%,2P,2PA,2P\%,FT,FTA,FT\%,ORB,TRB,AST,STL,BLK,TOV,PF,PTS
1 Player,Team,Pos,G,MP,G,GS,MP,FG,FGA,FG\%,3P,3PA,3P\%,2P,2PA,2P\%,FT,FTA,FT\%,ORB,TRB,AST,STL,BLK,TOV,PF,PTS
2 Lindsay Allen,MIN,G,29,698,29,20,698,65,163,.399,7,34,.206,58,129,.450,42,53,.792,17,71,130,17,3,37,61,179
3 Rebecca Allen,CON,G,40,858,40,27,858,98,240,.408,40,115,.348,58,125,.464,19,27,.704,28,113,37,37,50,34,77,255
4 Laeticia Amihere,ATL,F, 20,147,20,0,147,17,42,.405,0,1,.000,17,41,.415,22,41,.537,5,20,4,5,9,11,21,56
5 Ariel Atkins,WAS,G,27,679,27,27,679,104,251,.414,42,124,.339,62,127,488,61,68,.897,18,83,61,32,9,35,71,311
${ }_{6}$ Shakira Austin,WAS,C-F,19,440,19,17,440,77,154,.500,0,0,,77,154,.500,36,59,.610,29,133,17,16,17,35,44,190
7 Rachel Banham,MIN,G,32,435,32,1,435,61,165,.370,43,107,.402,18,58,.310,11,14,.786,4,32,54,11,3,36,45,176
8 Kierstan Bell,LVA,G,36,424,36,0,424,53,153,.346,20,82,.244,33,71,.465,6,10,.600,14,56,18,15,5,14,47,132
9 Grace Berger,IND,G,36,524,36,0,524,57,127,.449,16,34,.471,41,93,.441,21,25,.840,7,56,67,17,6,37,38,151
10 Morgan Bertsch, CHI,F,28,398,28,5,398,47,103,.456,16,36,.444,31,67,.463,12,16,.750,12,47,19,10,7,30,50,122
${ }_{11}{ }^{11}$ Morgan Bertsch,CHI,F,28,398,28,5,398,47,103,.456,16,36,.444,31,67,.463,12,16,.750,12,47,19,10,7,30,50,122
12 DeWanna Bonner,CON,F-G,40,1203,40,40,1203,233,548,.425,75,228,.329,158,320,.494,156,181,.862,35,224,87,42,25,58,64,697
13 Aliyah Boston, IND,F-C,40,1249,40,40,1249,233,403,.578,4,10,.400,229,393,.583,108,145,.745,125,335,89,53,50,75,125,578
14 Kalani Brown,DAL,C,32,524,32,5,524,90,143,.629,0,1,.000,90,142,.634,69,86,.802,55,143,33,7,22,42,65,249
15 Lexie Brown,LAS,G,12,364,12,11,364,54,111,486,27,65,415,27,46,587,14,16,875,2,25,29,11,3,16,14,149
16 Leigha Brown,CON,G,25,130,25,0,130,8,26,.308,1,10,.100,7,16,.438,4,6,.667,6,21,10,5,2,11,19,21
17 Rae Burrell,LAS,G-F,29,322,29,3,322,36,93,.387,16,41,.390,20,52,.385,17,21,.810,13,36,18,13,3,15,26,105
18 Veronica Burton,DAL,G,40,555,40,13,555,25,85,.294,13,48,.271,12,37,.324,31,34,.912, 22,70,88,29,10,17,57,94
19 Maya Caldwell,IND,G,30,304,30,1,304,21,72,.292,4,29,.138,17,43,.395,12,14,.857,9,27,19,9,3,22,27,58
20 Jordin Canada,LAS,G,38,1237,38,38,1237,163,403,.404,41,123,.333,122,280,.436,138,158,.873,9,116,228,86,9,103,89,505
21 Emma Cannon,IND,F,30,314,30,3,314,61,134,455,13,34,.382,48,100,.480,40,44,.909,24,94,14,4,2,33,42,175
22 Bridget Carleton,MIN,F,38,573,38,4,573,41,119,.345,30,89,.337,11,30,.367,11,15,.733,19,89,34,13,3,16,49,123
23 DiJonai Carrington,CON,G-F,32,550,32,0,550,93,223,.417,23,62,.371,70,161,.435,56,74,.757,27,92,41,20,3,36,68,265
24 Kaila Charles,SEA,G-F,4,41,4,0,41,3,12,.250,0,2,.000,3,10, 300, $0,0,3,5,1,1,0,0,9,6$
25 Layshia Clarendon,LAS,G,24,687,24,24,687,96, 193,.497,21,46,.457,75, 147,.510,54,59,.915,23,73,82, 27,0,54,63,267
26 Alysha Clark,LVA,F,39, 876,39,1,876,91,205,.444,51,132,.386,40,73,.548,27,33,.818,21,133,42,24,6,28,85,260
27 Natasha Cloud - 37,1199,37,37,1199,149,395,.377,45,151,.298,104,244,.426,126,140,.900,8,138,229,39,10,95,95,469
28 Nia Clouden, LAu, ᄂ,u, ᄂ, 5, 1,54,3,10,.300,1,3,.333,2,7,.286,1,2,.500,0,2,9,0,0,8,5,8
29 Nia Coffey,ATL, F, 31,680,31,31,680,83,192,.432,33,82,.402,50,110,.455,15,24,.625,15,150,48,17,37,45,68,214

Untitled spreadsheet $\quad \mathrm{Z}$ 回
File Edit View Insert Format Data Tools Extensions Help

Untitled spreadsheet $\hat{\omega}$ ©
File Edit View Insert Format Data Tools Extensions Help

A1:AB176 $-f_{X}$ Player

	A	в	c	D	E	F	G	H	1	J	к	L
1	Player	Team	Pos	G	MP	G	GS	MP	FG	FGA	FG\% 3P	3 P
2	Lindsay Allen	MIN	G	29	698	29	20	698	65	163	0.399	7
3	Rebecca Allen	CON	G	40	858	40	27	858	98	240	0.408	40
4	Laeticia Amihe	ATL	F	20	147	20	0	147	17	42	0.405	0
5	Ariel Atkins	WAS	G	27	679	27	27	679	104	251	0.414	42
6	Shakira Austin	WAS	C-F	19	440	19	17	440	77	154	0.5	0
7	Rachel Banhar	MIN	G	32	435	32	1	435	61	165	0.37	43
8	Kierstan Bell	LVA	G	36	424	36	0	424	53	153	0.346	20
9	Grace Berger	IND	G	36	524	36	0	524	57	127	0.449	16
10	Morgan Bertsc		F	28	398	28	5	398	47	103	0.456	16
11	Monique Billins		F	39	653	39	9	653	68	167	0.407	0
12	DeWanna Bon	CON	F-G	40	1203	40	40	1203	233	548	0.425	75
13	Aliyah Boston	IND	F-C	40	1249	40	40	1249	233	403	0.578	4
14	Kalani Brown	DAL	C	32	524	32	5	524	90	143	0.629	0
15	Lexie Brown	LAS	G	12	364	12	11	364	54	111	0.486	27
16	Leigha Brown	CON	G	25	130	25	0	130	8	26	0.308	1
17	Rae Burrell	LAS	G-F	29	322	29	3	322	36	93	0.387	16
18	Veronica Burto	DAL	G	40	555	40	13	555	25	85	0.294	13
19	Maya Caldwell	IND	G	30	304	30	1	304	21	72	0.292	4
20	Jordin Canada	LAS	G	38	1237	38	38	1237	163	403	0.404	41
21	Emma Cannor	IND	F	30	314	30	3	314	61	134	0.455	13
22	Bridget Carletc	MIN	F	38	573	38	4	573	41	119	0.345	30
23	DiJonai Carrin!	CON	G-F	32	550	32	0	550	93	223	0.417	23
24	Kaila Charles	SEA	G-F	4	41	4	0	41	3	12	0.25	0
25	Layshia Clarer LAS		G	24	687	24	24	687	96	193	0.497	21
26	Separator: Detect automatically ${ }^{\text {- }}$		F	39	876	39	1	876	91	205	0.444	51
27			G	37	1199	37	37	1199	149	395	0.377	45
28	Nia Clouden	LAS	G	5	54	5	1	54	3	10	0.3	1
29	Nia Coffey	ATL	F	31	680	31	31	680	83	192	0.432	33
	$+\equiv$ S	Sheet1 -									Sum: 412,180.48	

Step o: Get data

Step 1: Make a spreadsheet
Step 2: Load the spreadsheet as a table

WNBA stats $\underset{\rightarrow}{3} \rightarrow 8$
File Edit View Insert Format Data Tools Extensions Help

E14 $-f_{x} 249$

Lindsay Allen MIN
Rebecca Allen CON
Laeticia Amihe ATL
Ariel Atkins WAS
Shakira Austin WAS
Rachel Banhar MIN
Kierstan Bell IVA
Kierstan Bell LVA
Grace Berger IND
Morgan Bertsc CHI
Monique Billiṇ ATL DeWanna Bon CON
Aliyah Boston IND
Kilyan Bostoni Brown DAL
Kalani Brown DAL
Lexie Brown LAS
Lexie Brown LAS
Leigha Brown CON
Rae Burrell LAS
Veronica Burto DAL
Maya Caldwell IND
Maya Cadwal
Jordin Canada LAS
Emma Cannor IND
Bridget Carletc MIN
DiJonai Carrin! CON
Kaila Charles SEA
Layshia Clarer LAS
Layshia Clarer LAS
Alysha Clark LVA
Natasha Clouc WAS
Nia Clouden LAS
Nia Coffev ATL

include gdrive-sheets
include shared-gdrive("dcic-2021",
"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")
\# Load spreadsheet as a table
ssid = "1PfaNDQabnwIEwAMzmrQcND6_Iph3M0XK1YrflhLJEOs" spreadsheet $=$ load-spreadsheet(ssid)

田
WNBA stats $)^{2}$ (2)
File Edit View Insert Format Data Tools Extensions Help
Q b c 㫖 100% •

F11	
	A
1	Player

f 39

)) spreadsheet
spreadsheet("wnba-stats")
include gdrive-sheets
include shared-gdrive("dcic-2021",
"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

```
# Load spreadsheet as a table
```

ssid = "1PfaNDQabnwIEwAMzmrQcND6_Iph3M0XK1YrflhLJEOs"
spreadsheet = load-spreadsheet(ssid)

```
stats =
    load-table:
```

source: spreadsheet.sheet-by-name("wnba-stats",
end true)

This means we should skip the first row of the spreadsheet, which consists of column names.

WNBA stats $\boldsymbol{\rightarrow}$（
File Edit View Insert Format Data Tools Extensions Help

F11－fx 39												
	A	в	c	D	E	F	G	H	1	J	k	L
1	Player	Team	Pos	G	MP	G	GS	MP	FG	FGA	FG\％	3P
2	Lindsay Allen	MIN	G	29	698	29	20	698	65	163	0.399	7
3	Rebecca Allen	CON	G	40	858	40	27	858	98	240	0.408	40
4	Laeticia Amihe	ATL	F	20	147	20	0	147	17	42	0.405	0
5	Ariel Atkins	WAS	G	27	679	27	27	679	104	251	0.414	42
6	Shakira Austin	WAS	C－F	19	440	19	17	440	77	154	0.5	0
7	Rachel Banhaı	MIN	G	32	435	32	1	435	61	165	0.37	43
8	Kierstan Bell	LVA	G	36	424	36	0	424	53	153	0.346	20
9	Grace Berger	IND	G	36	524	36	0	524	57	127	0.449	16
10	Morgan Bertsc	CHI	F	28	398	28	5	398	47	103	0.456	16
11	Monique Billins		F	39	653	39	9	653	68	167	0.407	0
12	DeWanna Bon	CON	F－G	40	1203	40	40	1203	233	548	0.425	75
13	Aliyah Boston	IND	F－C	40	1249	40	40	1249	233	403	0.578	4
14	Kalani Brown	DAL	C	32	524	32	5	524	90	143	0.629	0
15	Lexie Brown	LAS	G	12	364	12	11	364	54	111	0.486	27
16	Leigha Brown	CON	G	25	130	25	0	130	8	26	0.308	1
17	Rae Burrell	LAS	G－F	29	322	29	3	322	36	93	0.387	16
18	Veronica Burto	DAL	G	40	555	40	13	555	25	85	0.294	13
19	Maya Caldwell		G	30	304	30	1	304	21	72	0.292	4
20	Jordin Canada		G	38	1237	38	38	1237	163	403	0.404	41
21	Emma Cannor		F	30	314	30	3	314	61	134	0.455	13
22	Bridget Carletc		F	38	573	38	4	573	41	119	0.345	30
23	DiJonai Carrin！	CON	G－F	32	550	32	0	550	93	223	0.417	23
24	Kaila Charles	SEA	G－F	4	41	4	0	41	3	12	0.25	0
25	Layshia Clarer	LAS	G	24	687	24	24	687	96	193	0.497	21
26	Alysha Clark	LVA	F	39	876	39	1	876	91	205	0.444	51
27	Natasha Cloud	WAS	G	37	1199	37	37	1199	149	395	0.377	45
28	Nia Clouden	LAS	G	5	54	5	1	54	3	10	0.3	1
29	Nia Coffev	ATL	F	31	680	31	31	680	83	192	0.432	33
	$+\equiv$	wnba－st										く

Step o: Get data

Step 1: Make a spreadsheet
Step 112: Rethink that spreadsheet
Step 2: Load the spreadsheet as a table

File Edit View Insert Format Data Tools Extensions Help

WNBA stats \boldsymbol{H} 回
File Edit View Insert Format Data Tools Extensions Help
Q $\quad 5$ Undo
HZ 23
YY

而 Delete
～．Find and replace

WNBA stats $\rightarrow \infty$
File Edit View Insert Format Data Tools Extensions Help

	A	B	c	D	E
1	Player	Team	Pos	G	PTS
2	Lindsay Allen	MIN	G	29	179
3	Rebecca Allen	CON	G	40	255
4	Laeticia Amihe	ATL	F	20	56
5	Ariel Atkins	WAS	G	27	311
6	Shakira Austin	WAS	C-F	19	190
7	Rachel Banhar	MIN	G	32	176
8	Kierstan Bell	LVA	G	36	132
9	Grace Berger	IND	G	36	151
10	Morgan Bertsc	CHI	F	28	122
11	Monique Billine		F	39	187
12	DeWanna Bon	CON	F-G	40	697
13	Aliyah Boston	IND	F-C	40	578
14	Kalani Brown	DAL	C	32	249
15	Lexie Brown	LAS	G	12	149
16	Leigha Brown	CON	G	25	21
17	Rae Burrell	LAS	G-F	29	105
18	Veronica Burto	DAL	G	40	94
19	Maya Caldwell		G	30	58
20	Jordin Canada		G	38	505
21	Emma Cannor		F	30	175
22	Bridget Carletc		F	38	123
23	DiJonai Carrin!	CON	G-F	32	265
24	Kaila Charles	SEA	G-F	4	6
25	Layshia Clarer	LAS	G	24	267
26	Alysha Clark	LVA	F	39	260
27	Natasha Cloud	WAS	G	37	469
28	Nia Clouden	LAS	G	5	8
29	Nia Coffev	ATL	F	31	214

$+\equiv$ wnba-stats \quad wnba-stats-simple

Step o: Get data

Step 1: Make a spreadsheet
Step 112: Rethink that spreadsheet
Step 2: Load the spreadsheet as a table
include gdrive-sheets
include shared-gdrive("dcic-2021",
"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

```
# Load spreadsheet as a table
```

ssid = "1PfaNDQabnwIEwAMzmrQcND6_Iph3M0XK1YrflhLJEOs"
spreadsheet = load-spreadsheet(ssid)
stats =
load-table:
source: spreadsheet.sheet-by-name("wnba-stats", true)
include gdrive-sheets
include shared-gdrive("dcic-2021",
"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")
\# Load spreadsheet as a table
ssid = "1PfaNDQabnwIEwAMzmrQcND6_Iph3M0XK1YrflhLJEOs" spreadsheet $=$ load-spreadsheet(ssid)
stats =
load-table:
player, team, pos, games, pts
source: spreadsheet.sheet-by-name("wnba-statssimple",

```
true)
```

)) stats

player	team	pos	games	pts
"Lindsay Allen"	"MIN"	"G"	29	179
"Rebecca Allen"	"CON"	"G"	40	255
"Laeticia Amihere"	"ATL"	"F"	20	56
"Ariel Atkins"	"WAS"	"G"	27	311
"Shakira Austin"	"WAS"	"C-F"	19	190
"Rachel Banham"	"MIN"	"G"	32	176
"Kierstan Bell"	"LVA"	"G"	36	132

Exercise: Who scores the most points per game?

To compute the average points per game for each player, we need to build a new column.


```
fun average-points(player :: Row) -> Number:
    doc: "Return the average number of points the player
scored per game"
where:
```

end

We can test table program by using test tables.
These are tables that have the same structure as the table for our real data, but which are smaller and contain data that are useful for testing.


```
test-stats =
    table: player, team, pos, games, pts
    row: "Michael Jordan", "TUS", "F", 22, 116
    row: "Bugs Bunny", "TUS", "G", 25, 74
    row: "Nawt", "MST", "G", 9, 60
    row: "Blanko", "MST", "G", 25, 174
    end
fun average-points(player :: Row) -> Number:
    doc: "Return the average number of points the player
scored per game"
where:
    average-points(test-stats.row-n(0)) is 116 / 22
    average-points(test-stats.row-n(1)) is 74 / 25
end
```

```
test-stats =
    table: player, team, pos, games, pts
    row: "Michael Jordan", "TUS", "F", 22, 116
    row: "Bugs Bunny", "TUS", "G", 25, 74
    row: "Nawt", "MST", "G", 9, 60
    row: "Blanko", "MST", "G", 25, 174
    end
fun average-points(player :: Row) -> Number:
    doc: "Return the average number of points the player
scored per game"
    player["pts"] / player["games"]
where:
    average-points(test-stats.row-n(0)) is 116 / 22
    average-points(test-stats.row-n(1)) is 74 / 25
end
```

,) build-column(stats, "avg", average-points)

build-column(stats, "avg", average-points)

Name of the
new column
,), build-column(stats, "avg", average-points)

Name of the Name of the
new column function to use

) $)^{\prime}$ build-column(stats, "avg", average-points)

player	team	pos	games	pts	avg
"Lindsay Allen"	"MIN"	"G"	29	179	$179 / 29$
"Rebecca Allen"	"CON"	"G"	40	255	6.375
"Laeticia Amihere"	"ATL"	"F"	20	56	2.8
"Ariel Atkins"	"WAS"	"G"	27	311	$11 . \overline{518}$
"Shakira Austin"	"WAS"	"C-F"	19	190	10
"Rachel Banham"	"MIN"	"G"	32	176	5.5

We can sort by the values in our new column, but first let's give a name to that table:

```
stats-with-avgs =
    build-column(stats, "avg", average-points)
```

We can sort by the values in our new column, but first let's give a name to that table:

```
stats-with-avgs =
    build-column(stats, "avg", average-points)
```

,) order-by(stats-with-avgs, "avg", false)

player	team	pos	games	pts	avg
"Jewell Loyd"	"SEA"	"G"	38	939	$24.7 \overline{105263157894736842}$
"Breanna Stewart"	"NYL"	"F"	40	919	22.975
"A'ja Wilson"	"LVA"	"F"	40	912	22.8
"Napheesa Collier"	"MIN"	"F"	37	796	$21 . \overline{513}$
"Arike Ogunbowale"	"DAL"	"G"	40	849	21.225

```
How does Breanna
compare with other NY
Liberty players?
```

player	team	pos	games	pts	avg
"Jewell Loyd"	"SEA"	"G"	38	939	$24.7 \overline{105263157894736842}$
"Breanna Stewart"	"NYL"	"F"	40	919	22.975
"A'ja Wilson"	"LVA"	"F"	40	912	22.8
"Napheesa Collier"	"MIN"	"F"	37	796	$21 . \overline{513}$
"Arike Ogunbowale"	"DAL"	"G"	40	849	21.225

stats-with-avgs = build-column(stats, "avg", average-points)

```
top-scorers =
    order-by(stats-with-avgs, "avg", false)
```

(). fun nyl(player): player["team"] == "NYL" end
,) fun nyl(player): player["team"] == "NYL" end (). filter-with(top-scorers, nyl)

player	team	pos	games	pts	avg
"Breanna Stewart"	"NYL"	"F"	40	919	22.975
"Sabrina Ionescu"	"NYL"	"G"	36	613	$17.02 \overline{7}$
"Betnijah Laney"	"NYL"	"G-F"	40	513	12.825
"Jonquel Jones"	"NYL"	"F"	40	453	11.325
"Courtney Vandersloot"	"NYL"	"G"	39	410	$10 . \overline{512820}$
"Marine Johannes"	"NYL"	"G"	35	249	$7.1 \overline{142857}$

Exercise: Generalizing the question

For any given team, who scores the most points per game?

player	team	pos	games	pts
"Lindsay Allen"	"MIN"	"G"	29	179
"Rebecca Allen"	"CON"	"G"	40	255
"Laeticia Amihere"	"ATL"	"F"	20	56
"Ariel Atkins"	"WAS"	"G"	27	311
"Shakira Austin"	"WAS"	"C-F"	19	190
"Rachel Banham"	"MIN"	"G"	32	176
"Kierstan Bell"	"LVA"	"G"	36	132
"Grace Berger"	"IND"	"G"	36	151
"Morgan Bertsch"	"CHI"	"F"	28	122
"Monique Billings"	"ATL"	"F"	39	187
Click to show the remaining	165 rows. .			
"				

"Breanna Stewart"

"NYL"

"NYL"

Sydney Harris
"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

If you aren't sure how to approach a problem, don't start by trying to write code!

Plan until you understand the problem.

player	team	pos	games	pts
Michael Jordan	TUS	F	22	116
Bugs Bunny	TUS	G	25	74
Nawt	MST	G	9	60
Blanko	MST	G	25	174

"TUS"

player	team	pos	games	pts	
Michael Jordan	TUS	F	22	116	
Bugs Bunny	TUS	G	25	74	"TUS"
Nawt	MST	G	9	60	
Blanko	MST	G	25	174	
player	team	pos	games	pts	
Michael Jordan	TUS	F	22	116	
Bugs Bunny	TUS	G	25	74	

player	team	pos	games	pts	build-column
Michael Jordan	TUS	F	22	116	
Bugs Bunny	TUS	G	25	74	
player	team	pos	games	pts	avg
Michael Jordan	TUS	F	22	116	5.27
Bugs Bunny	TUS	G	25	74	2.96
player	team	pos	games	pts	avg
Michael Jordan	TUS	F	22	116	5.27
Bugs Bunny	TUS	G	25	74	2.96

player	team	pos	games	pts	
Michael Jordan	TUS	F	22	116	
Bugs Bunny	TUS	G	25	74	
player	team	pos	games	pts	avg
Michael Jordan	TUS	F	22	116	5.27
Bugs Bunny	TUS	G	25	74	
player	team	pos	games	pts	avg
Michael Jordan	TUS	F	22	116	5.27
Bugs Bunny	TUS	G	25	74	2.96
Michael Jordan	TUS	F	22	116	5.27

player	team	pos	games	pts	
Michael Jordan	TUS	F	22	116	
Bugs Bunny	TUS	G	25		build-column
player	team	pos	games	pts	avg
Michael Jordan	TUS	F	22	116	5.27
Bugs Bunny	TUS	G	25	74	2.96
player	team	pos	games	pts	avg
Michael Jordan	TUS	F	22	116	5.27
Bugs Bunny	TUS	G	25	74	2.96
Michael Jordan	TUS	F	22	116	5.27

That's a plan; let's implement it!

```
test-stats =
    table: player, team, pos, games, pts
        row: "Michael Jordan", "TUS", "F", 22, 116
        row: "Bugs Bunny", "TUS", "G", 25, 74
            row: "Nawt", "MST", "G", 9, 60
            row: "Blanko", "MST", "G", 25, 174
    end
```

fun top-scorer-on-team(players : : Table, team : : String) -> String:
doc: "Return the name of the player on the given team with the highest
average points per game"
end

```
test-stats =
    table: player, team, pos, games, pts
        row: "Michael Jordan", "TUS", "F", 22, 116
            row: "Bugs Bunny", "TUS", "G", 25, 74
            row: "Nawt", "MST", "G", 9, 60
            row: "Blanko", "MST", "G", 25, 174
    end
fun top-scorer-on-team(players :: Table, team :: String) -> String:
    doc: "Return the name of the player on the given team with the highest
average points per game"
where:
    top-scorer-on-team(test-stats, "TUS") is "Michael Jordan"
    top-scorer-on-team(test-stats, "MST") is "Blanko"
end
```

```
test-stats = ...
fun top-scorer-on-team(players :: Table, team :: String) -> String:
    doc: "Return the name of the player on the given team with the highest
average points per game"
where:
    top-scorer-on-team(test-stats, "TUS") is "Michael Jordan"
    top-scorer-on-team(test-stats, "MST") is "Blanko"
end
```

```
test-stats = ...
fun top-scorer-on-team(players :: Table, team :: String) -> String:
    doc: "Return the name of the player on the given team with the highest
average points per game"
where:
    top-scorer-on-team(test-stats, "TUS") is "Michael Jordan"
    top-scorer-on-team(test-stats, "MST") is "Blanko"
end
fun top-scorer(players :: Table) -> String:
where:
    top-scorer(test-stats) is "Blanko"
    # Ideally, add at least one more test case...
end
```

```
test-stats = ...
fun top-scorer-on-team(players :: Table, team :: String) -> String:
    doc: "Return the name of the player on the given team with the highest
average points per game"
where:
    top-scorer-on-team(test-stats, "TUS") is "Michael Jordan"
    top-scorer-on-team(test-stats, "MST") is "Blanko"
end
```

```
fun top-scorer(players :: Table) -> String:
    doc: "Return the name of the player with the highest average number of
points"
    ...
where:
    top-scorer(test-stats) is "Blanko"
    # Ideally, add at least one more test case...
        This is just putting the expressions
        we wrote before into a function and
        then returning the name of the
        player in the first row.
```

```
test-stats = ...
fun top-scorer-on-team(players :: Table, team :: String) -> String: ... end
fun top-scorer(players :: Table) -> String:
    doc: "Return the name of the player with the highest average number of points"
where:
    top-scorer(test-stats) is "Blanko"
    # Ideally, add at least one more test case...
end
```

```
test-stats = ...
fun top-scorer-on-team(players :: Table, team :: String) -> String: ... end
fun top-scorer(players :: Table) -> String:
    doc: "Return the name of the player with the highest average number of points"
    players-with-avgs =
        build-column(players, "avg", average-points)
    sorted-by-avg =
        order-by(players-with-avgs, "avg", false)
    top-player = sorted-by-avg.row-n(0)
    top-player["player"]
where:
    top-scorer(test-stats) is "Blanko"
    # Ideally, add at least one more test case...
end
```

```
test-stats = ...
fun top-scorer-on-team(players :: Table, team :: String) -> String:
        doc: "Return the name of the player on the given team with the highest
average points per game"
\otimes
    top-scorer-on-team(test-stats, "TUS") is "Michael Jordan"
    top-scorer-on-team(test-stats, "MST") is "Blanko"
end
fun top-scorer(players :: Table) -> String: ... end
Ok, we've got top-scorer to use,
so let's start filling in this body.
```

```
test-stats = ...
fun top-scorer-on-team(players :: Table, team :: String) -> String:
    doc: "Return the name of the player on the given team with the highest
average points per game"
    team-players = ...
    top-scorer(team-players)
where:
    top-scorer-on-team(test-stats, "TUS") is "Michael Jordan"
    top-scorer-on-team(test-stats, "MST") is "Blanko"
end
fun top-scorer(players :: Table) -> String: ... end
```

```
test-stats = ...
fun top-scorer-on-team(players :: Table, team :: String) -> String:
    doc: "Return the name of the player on the given team with the highest
average points per game"
    team-players = filter-with(players, is-on-team)
    top-scorer(team-players)
where:
    top-scorer-on-team(test-stats, "TUS") is "Michael Jordan"
    top-scorer-on-team(test-stats, "MST") is "Blanko"
end
fun is-on-team(player :: Row) -> Boolean:
    doc: "Return true if the player is on the team we're interested in"
    player["team"] == team
end
fun top-scorer(players :: Table) -> String: ... end
```


Alex Norris

```
fun top-scorer-on-team(players :: Table, team :: String) -> String:
    doc: "Return the name of the player on the given team with the highest
average points per game"
    team-players = filter-with(players, is-on-team)
    top-scorer(team-players)
where:
team is only defined
inside this function
    top-scorer-on-team(test-stats, "TUS") is "Michael Jordan"
    top-scorer-on-team(test-stats, "MST") is "Blanko"
end
```

fun is-on-team(player :: Row) -> Boolean:
doc: "Return true if the player is on the team we're interested in"
player["team"] ==team
But we're trying to use it
here!
fun top-scorer (players :: Table) -> String: ... end

```
test-stats = ...
fun top-scorer-on-team(players :: Table, team :: String) -> String:
    doc: "Return the name of the player on the given team with the highest
average points per game"
    fun is-on-team(player :: Row) -> Boolean:
        doc: "Return true if the player is on the team we're interested in"
        player["team"] == team
    end
    team-players = filter-with(players, is-on-team)
    top-scorer(team-players)
where:
    top-scorer-on-team(test-stats, "TUS") is "Michael Jordan"
    top-scorer-on-team(test-stats, "MST") is "Blanko"
end
```

fun top-scorer (players :: Table) -> String: ... end

```
fun top-scorer-on-team(players :: Table, team :: String) -> String:
    doc: "Return the name of the player on the given team with the highest
average points per game"
    fun is-on-team(player :: Row) -> Boolean:
    doc: "Return true if the player is on the team we're interested in"
    player["team"] == team We can nest function
    end
    team-players = filter-with(players, is-on-team)
    top-scorer (team-players)
where:
    top-scorer-on-team(test-stats, "TUS") is "Michael Jordan"
    top-scorer-on-team(test-stats, "MST") is "Blanko"
end
```

We can nest function definitions, so now the team that is-on-team is considering is whatever team was passed to top-scorer-on-team.

Class code:
tinyurl.com/101-2024-02-01

Acknowledgments

This class incorporates material from:

Greg Daniels \& Michael Schur, Parks and Recreation
Kathi Fisler and colleagues, Brown University
Sydney Harris
Alex Norris, Webcomic Name
Suraj Rampure and colleagues, University of California, Berkeley
basketball-reference.com
Back to the Future Part II

