
Trees

15 February 2024

cmpu 101 § 53 · Computer Science I

Where are we?

We’ve seen how lists are defined:
data List:
 | empty
 | link(first :: Any, rest :: List)
end

Self-reference

And, given this data definition, we can write
functions that recursively process a list:

fun list-fun(lst :: List) -> ...:
 doc: "Template for a function that takes a List"
 cases (List) lst:
 | empty => ...
 | link(f, r) =>
 ... f ...
 ... list-fun(r) ...
 end
where:
 list-fun(...) is ...
end

Recursive call

Every data definition has a corresponding template.

The more complex the data definition is – lots of
variants, recursion, etc. – the more helpful it is to
use the template!

Given a (recursive) data definition, you write a
template by:
1 Creating a function header

2 Using cases to break the data input into its variants

3 In each case, listing each of the fields in the answer

4 Calling the function itself on any recursive fields

Warm-up practice

fun list-len(lst :: List) -> Number:
 doc: "Compute the length of a list"
 cases (List) lst:
 | empty => 0
 | link(f, r) => 1 + list-len(____)
 end
end

fun list-len(lst :: List) -> Number:
 doc: "Compute the length of a list"
 cases (List) lst:
 | empty => 0
 | link(f, r) => 1 + list-len(r)
 end
end

fun list-product(lst :: List<Number>) -> Number:
 doc: "Compute the product of all the numbers in lst"
 cases (List) lst:
 | empty => 1
 | link(f, r) => ____ * list-product(r)
 end
end

fun list-product(lst :: List<Number>) -> Number:
 doc: "Compute the product of all the numbers in lst"
 cases (List) lst:
 | empty => 1
 | link(f, r) => f * list-product(r)
 end
end

fun is-member(item, lst :: List) -> Boolean:
 doc: "Return true if item is a member of lst"
 cases (List) lst:
 | empty => ______
 | link(f, r) =>
 (f == ______) or is-member(______, ______)
 end
end

fun is-member(item, lst :: List) -> Boolean:
 doc: "Return true if item is a member of lst"
 cases (List) lst:
 | empty => false
 | link(f, r) =>
 (f == item) or is-member(item, r)
 end
end

Rumor mills

The news [of Emma and Mr. Knightley’s engagement]
was universally a surprize wherever it spread; and
Mr. Weston had his five minutes share of it…

“It is to be a secret, I conclude,” said he. “These
matters are always a secret, till it is found out that
every body knows them. Only let me be told when I
may speak out.—I wonder whether Jane has any
suspicion.”

Jane Austen, Emma, 1815

He went to Highbury the next morning, and
satisfied himself on that point. He told her the
news… and Miss Bates being present, it passed, of
course, to Mrs. Cole, Mrs. Perry, and Mrs. Elton,
immediately afterwards. It was no more than the
principals were prepared for; they had calculated
from the time of its being known at Randalls, how
soon it be over Highbury; and were thinking of
themselves, as the evening wonder in many a family
circle…

Jane Austen, Emma, 1815

Tracking rumors

Suppose we want to track gossip in this rumor mill.

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

I said yes!

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

I said yes!

💘

💕

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

I said yes!

Suppose we want to track gossip in this rumor mill.

Mr Woodhouse

Tracking rumors

Emma

I said yes!

Suppose we want to track gossip in this rumor mill.

Mr Woodhouse

Tracking rumors

Emma

Mrs Weston

I said yes!

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

Mrs Weston

Mr Weston

Mr Woodhouse

I said yes!

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

Jane

Mrs Weston

Mr Weston

Mr Woodhouse

I said yes!

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

Jane

Miss BatesMrs Weston

Mr Weston

Mr Woodhouse

I said yes!

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

Mrs Weston

Mr Weston

JaneMr Woodhouse

Miss Bates

Mrs Cole

Mrs Elton

Mrs Perry

I said yes!

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

Mrs Weston

Mr Weston

JaneMr Woodhouse

Miss Bates

Mrs Cole

Mrs Elton

Simplifying assumption:
Each person tells at
most two others

Mrs Perry

I said yes!

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

Mrs Weston

JaneMr Woodhouse

Miss Bates

Mrs Cole

Mrs Elton

Simplifying assumption:
Each person tells at
most two others

Mr Weston

I said yes!

Suppose we want to track gossip in this rumor mill.

Tracking rumors

Emma

Mrs Weston

JaneMr Woodhouse

Miss Bates

Mrs Cole

Mrs Elton

Simplifying assumption:
Each person tells at
most two others

Mr Weston

I said yes!

The Jane Austen example is a bit frivolous, but
otherwise this is an important problem.

A lot of research right now is focused on building
models of how information – and misinformation! –
spreads through social networks, both in person and
online.

Representing rumor mills

Is a rumor mill simply a list of people?

Representing rumor mills

Is a rumor mill simply a list of people?

No, because there are relationships
among the people.

Representing rumor mills

We could represent these relations with a table, e.g.,
name :: String next1 :: String next2 :: String

"Emma" "Mr Woodhouse" "Mrs Weston"

"Mr Woodhouse"

… … …

Representing rumor mills

Using a table doesn’t give us any straightforward
way to process the rumor mill.

Could we use something like a list but representing
the relations?

Representing rumor mills

data Person:
 | person(name :: String, next1 :: Person, next2 :: Person)
end

How about this?

data Person:
 | person(name :: String, next1 :: Person, next2 :: Person)
end

Representing rumor mills

Some people don’t gossip to anyone else – the red arrows above.

data RumorMill:
 | no-one
 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)
end

Representing rumor mills

How about this?

Example rumor mills

no-one

data RumorMill:
 | no-one
 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)
end

Example rumor mills

gossip("Mrs Cole", no-one, no-one)

Mrs Cole

data RumorMill:
 | no-one
 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)
end

Example rumor mills

gossip("Miss Bates",
 gossip("Mrs Cole", no-one, no-one)
 gossip("Mrs Elton", no-one, no-one))

data RumorMill:
 | no-one
 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)
end

gossip("Emma",

 gossip("Mr Woodhouse", no-one, no-one),

 gossip("Mrs Weston",

 gossip("Mr Weston",

 gossip("Jane", no-one, no-one),

 gossip("Miss Bates",

 gossip("Mrs Cole", no-one, no-one),

 gossip("Mrs Elton", no-one, no-one))),

 no-one))

Example using names for parts:
MRS-COLE-MILL = gossip("Mrs Cole", no-one, no-one)

MRS-ELTON-MILL = gossip("Mrs Elton", no-one, no-one)

MISS-BATES-MILL = gossip("Miss Bates", MRS-COLE-MILL, MRS-ELTON-MILL)

JANE-MILL = gossip("Jane", no-one, no-one)

MR-WESTON-MILL = gossip("Mr Weston", JANE-MILL, MISS-BATES-MILL)

MRS-WESTON-MILL = gossip("Mrs Weston", MR-WESTON-MILL, no-one)

MR-WOODHOUSE-MILL = gossip("Mr Woodhouse", no-one, no-one)

EMMA-MILL = gossip("Emma", MR-WOODHOUSE-MILL, MRS-WESTON-MILL)

A RumorMill is a type of structure called a tree.
Each element in the tree is called a node.

The first node in the tree is called the root.

A node with no children is called a leaf.

Like a list, a tree is recursive: Every subtree is a tree.

Emma

Mrs Weston

JaneMr Woodhouse

I said yes!

Miss Bates

Mrs Cole

Mrs Elton

Mr Weston

Root

Draw it vertically and you can see it’s a tree!

Root

Computer scientists are weird.

data RumorMill:
 | no-one
 | gossip(name :: String,
 next1 :: RumorMill,
 next2 :: RumorMill)
end

Tree

Subtree

Subtree

Programming with rumors
data RumorMill:
 | no-one
 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)
end

Programming with rumors
data RumorMill:
 | no-one
 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)
end

Self-reference × 2

Programming with rumors
data RumorMill:
 | no-one
 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)
end

Self-reference × 2

For each element, there’s not just one “next” element; there are two!

Programming with rumors
data RumorMill:
 | no-one
 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)
end
#|
fun rumor-mill-fun(rm :: RumorMill) -> ...:
 doc: "Template for a function with a RumorMill as input"
 cases (RumorMill) rm:
 | no-one => ...
 | gossip(name, next1, next2) =>
 ... name
 ... rumor-mill-fun(next1)
 ... rumor-mill-fun(next2)
 end
end
|#

Self-reference × 2

Programming with rumors
data RumorMill:
 | no-one
 | gossip(name :: String, next1 :: RumorMill, next2 :: RumorMill)
end
#|
fun rumor-mill-fun(rm :: RumorMill) -> ...:
 doc: "Template for a function with a RumorMill as input"
 cases (RumorMill) rm:
 | no-one => ...
 | gossip(name, next1, next2) =>
 ... name
 ... rumor-mill-fun(next1)
 ... rumor-mill-fun(next2)
 end
end
|#

Self-reference × 2

Natural recursion × 2

Starter file:
tinyurl.com/101-2024-02-15-starter

http://tinyurl.com/101-2024-02-15-starter

Rumor program examples

Design the function is-informed that takes a
person’s name and a rumor mill and determines
whether the person is part of the rumor mill.

Rumor program examples

Design the function gossip-length that takes a
rumor mill and determines the length of the longest
sequence of people transmitting the rumor.

Rumor program examples

Design the function add-gossip that takes a rumor
mill and two names – one new and one old – and
adds the new person to the rumor mill, receiving
rumors from the old person. (You can assume the
old person does not already have two next
persons!)

Solutions:
tinyurl.com/101-2024-02-15

http://tinyurl.com/101-2024-02-15

Acknowledgments

This lecture incorporates material from:
Jane Austen, Emma

Tom Ellman, Vassar College

Marc Smith, Vassar College

