
Generative Recursion

22 February 2024

CMPU 101 § 53 · Computer Science I

Where are we?

Self-reference
Recursive data

data List:
 | empty
 | link(first :: Any, rest :: List)
end

Self-reference
Recursive data

data List:
 | empty
 | link(first :: Any, rest :: List)
end

fun list-fun(lst :: List) -> ...:
 cases (List) lst:
 | empty => ...
 | link(f, r) =>
 ... f ...
 ... list-fun(r) ...
 end
end

Recursive functions
Recursive call

The same idea holds for lists, binary trees, trinary
trees, n-ary trees, and all kinds of other recursive
data types: The structure of the function follows the
structure of the data.

The recursive functions we’ve written have used
structural (or natural) recursion.

In structural recursion, each recursive call takes
some sub-piece of the data.

Going through a list, we keep taking the rest of the list.

Going through a tree, we keep looking at the sub-trees.

Generative recursion

In generative recursion, the recursive cases are
generated based on the problem to be solved.

Generative recursion can be harder because neither
the base nor recursive cases follow from a data
definition.

Template for generative recursion
fun problem-solver(d) -> ...:
 if is-trivial(d):
 # Base case: The computation is in some way
 # trivial.
 ... d ...
 else:
 # Recursive case: Transform the data d to generate
 # new problems.
 combiner(
 ...d...,
 problem-solver(transform(d)),
 ...)
 end
end

When you write a function with generative
recursion you need to be careful about termination
– how do you know you’ll ever reach the base case?

Fractals

“A fractal is a way of seeing infinity.”
Benoit Mandelbrot

Let’s design a function that consumes a number and
produces a Sierpiński triangle of that size:

Start with an equilateral triangle with side length s:

Inside that triangle are three more Sierpiński triangles:

And inside of each of those … and so on.

Producing something that looks like this:

s

s/2

How small a shape can get before we stop drawing
smaller ones
CUTOFF = 10

fun s-tri(s :: Number) -> Image:
 doc: "Produce a Sierpiński triangle of the given size
by generating one for s/2 and placing one copy above
two copies"
 if s <= CUTOFF:
 triangle(size, "outline", "red")
 else:
 sub = s-tri(s / 2)
 above(sub,
 beside(sub, sub))
 end
end

How do we know that this function won’t run
forever?

Three-part termination argument:
Base case: s <= CUTOFF

Reduction step: s / 2

Argument that repeated application of reduction step will eventually
reach the base case:

As long as the cutoff is > 0 and s starts ≥ 0, repeated division by 2
will eventually be less than the cutoff.

Exercise

Design a function s-carpet to produce a Sierpiński
carpet of size s:

Exercise

Design a function s-carpet to produce a Sierpiński
carpet of size s:

There are eight copies
of the recursive call
positioned around a
blank square

fun s-carpet(s :: Number) -> Image:
 doc: "Draw a Sierpiński carpet of size s-by-s by
generating an s/3 carpet and positioning it on every
side of an empty s/3 square"
 if s <= CUTOFF:
 square(s, "outline", "red")
 else:
 sub = s-carpet(s / 3)
 blk = square(s / 3, "solid", "white")
 above3(
 beside3(sub, sub, sub),
 beside3(sub, blk, sub),
 beside3(sub, sub, sub))
 end
end

How do we know that this function won’t run
forever?

Three-part termination argument:
Base case: s <= CUTOFF

Reduction step: s / 3

Argument that repeated application of reduction step will eventually
reach the base case:

As long as the cutoff is > 0 and s starts ≥ 0, repeated division by 3
will eventually be less than the cutoff.

Animation

What if we want to see the progression of the
fractal becoming more complex?

››› map(s-tri, [list: 10, 20, 40, 80])
Exciting! Dynamic!

It might be more fun to see this change over time
rather than flattened into a list.

Pyret has a mechanism for supporting interactive
visual programs, called a reactor.

To use it, first write
include reactors

reactor:
 init: initial-state,
 to-draw: draw-function,
 event-type: event-function,
end

Class code:
tinyurl.com/101-2024-02-22

http://tinyurl.com/101-2024-02-22

Acknowledgments

This lecture incorporates material from:
Gregor Kiczales, University of British Columbia

Marc Smith, Vassar College

