CMPU 101 § 53 · Computer Science I

Graphs and Simulation

29 February 2024

You've probably seen posts joking about programming errors making things go sideways on 2/29—this is not just a joke. Microsoft To Do scans task titles for clues to due dates and reminder times. This is what happened when I dated a task for today.

This is why we write tests.

facebook

Facebook helps you connect and share with the people in your life.

Dystopian proxies for friendship

Each of these structures consists of

a collection of objects and

links between those objects.

We'd like to find a general framework for describing these objects and their properties.

A graph is a mathematical structure for representing relationships between entities.

A graph consists of a set of nodes (or vertices) connected by edges (or arcs).

A graph consists of a set of nodes (or vertices) connected by edges (or arcs).

A graph consists of a set of nodes (or vertices) connected by edges (or arcs).

Some graphs are directed.

Some graphs are undirected.

Every undirected graph can also be represented as a directed graph, albeit with twice the edges.

How can we represent a graph?

```
data Graph:
   | vertex(name :: String, neighbors :: List<Graph>)
end
```



```
data Graph:
   | vertex(name :: String, neighbors :: List<Graph>)
end
```


This breaks horribly if there are cycles in the graph.

Better plan:

```
data Vertex:
    | vertex(name :: String, neighbors :: List<String>)
end
```

Now a graph is a List<Vertex>.

This is called an "adjacency list" representation.

Example: London Underground

This isn't a complete model. We Oxford Tottenham could keep adding directional edges — and, in fact, all of the stations that are connected would eventually have edges Leicester going both ways. Piccadilly Charing

Exercise

Let's use a reactor to simulate a traveller riding the subway, following the connections in the graph.

Exercise

Let's use a reactor to simulate a traveller riding the subway, following the connections in the graph.

Starter code:

tinyurl.com/101-2024-02-29-starter

Code:

tinyurl.com/101-2024-02-29

Challenge exercise

Update the simulation to allow any number of travellers at the same time.

Code:

tinyurl.com/101-2024-02-29-rush-hour

Acknowledgments

This lecture incorporates material from:

Keith Schwarz, Stanford University

Laney Strange, Northeastern University

