
cmpu101 §55 ⋅ Computer Science I ⋅ Spring 2019
Assignment 4

Due March 27, 9:00 a.m.

Problem 1

Define a deeply recursive Scheme procedure replace* that takes three arguments: a datum
(e.g., a symbol) old, a datum new, and a possibly nested list lst. It should return a new ex-
pression that results from replacing every occurrence of old in lst with new.

(replace* ’a ’x ’(a b () c a)) ⇒ (x b () c x)
(replace* ’a ’x ’((a c a) (a b) a)) ⇒ ((x c x) (x b) x)
(replace* ’() ’b ’(a (() b) () c)) ⇒ (a (b b) b c)
(replace* ’(1 2) ’n ’((1 2) (w (1 2)))) ⇒ (n (w n))
(replace* ’a ’b ’()) ⇒ ()

Problem 2

Define a deeply recursive Scheme predicate all-greater*? that takes two arguments: a num-
ber n and a possibly nested list of numbers lst. It should return #t if every number in lst is
greater than n. Otherwise it should return #f. You won’t be penalized for leaving it as a cond,
but writing it without using if or cond would build character.

(all-greater*? 3 ’()) ⇒ #t
(all-greater*? 3 ’(4 5 6)) ⇒ #t
(all-greater*? 3 ’(() ())) ⇒ #t
(all-greater*? 2 ’(1 (3 1) 5)) ⇒ #f
(all-greater*? 0 ’(4 (3 1) 5)) ⇒ #t

Problem 3

Write a Scheme procedure called up-to-by-two that takes a positive integer n as input. If n is
even, it should return a list of positive even integers from 2 to n. If n is odd, it should return a
list of positive odd integers from 1 to n. The returned list should be in increasing order from
left to right, as shown below. Use the accumulator method in your solution.

(up-to-by-two 0) ⇒ ()
(up-to-by-two 1) ⇒ (1)
(up-to-by-two 5) ⇒ (1 3 5)
(up-to-by-two 10) ⇒ (2 4 6 8 10)
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Problem 4

Define a function that satisfies the following contract:

;; REM-DUPES
;; ---------
;; INPUTS: LST, any list
;; OUTPUT: A list containing the same elements as LST, but without any
;; duplicates

Theorder of the elements in the output list does not reallymatter, but try to preserve asmuch
of the order of elements in lst as possible. Here are some examples:

> (rem-dupes ’(1 1 1 1 1))
(1)
> (rem-dupes ’(a b r a c a d a b r a))
(a b r c d)
> (rem-dupes ’(1 2 3 1 2 3 1 2 3 4 3 2 1))
(1 2 3 4)

Use an accumulator-based helper function, rem-dupes-acc, that satisfies the following con-
tract.

;; REM-DUPES-ACC
;; -------------
;; INPUTS: LST, any list
;; ACC, a list accumulator
;; OUTPUT: When called with ACC = (), the output is a list that contains
;; the same elements as LST, but without any duplicates.

Hint: In the recursive case, use the built-in member function to decide whether or not the first
element of lst already appears in the accumulator. Use that information to decide whether
or not to accumulate it now.

Problem 5

Write a Scheme procedure called partition that takes as input lst, a list of numbers and
pivot, a number. The procedure will return a list of three lists, which contain the elements
below, equal to, and above the pivot, respectively. The order of numbers in each list doesn’t
matter, but each element in the output must appear the same number of times that it appears
in the input.

(partition ’() 36) ⇒ (() () ())
(partition ’(1 2 3 4 5) 3) ⇒ ((1 2) (3) (4 5))
(partition ’(8 -2 4 37 16 2 2) 2) ⇒ ((-2) (2 2) (8 4 37 16))
(partition ’(9 4 7 8) 3) ⇒ (() () (9 4 7 8))
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Problem 6

Define a function called print-and-sum-n-tosses that satisfies the following contract:

;; PRINT-AND-SUM-N-TOSSES
;; ----------------------
;; INPUTS: N, a non-negative integer
;; OUTPUT: The sum of N random tosses of a six-sided die
;; SIDE EFFECT: Prints out the tosses along the way

Here are some sample interactions:

> (print-and-sum-n-tosses 5)
2 2 6 6 2 : 18
> (print-and-sum-n-tosses 5)
3 3 5 3 5 : 19
> (print-and-sum-n-tosses 5)
3 1 5 1 2 : 12

Note that the numbers to the left of the : are side-effect printing, whereas the numbers to the
right of the : are output values.

Hints: Define print-and-sum-n-tosses-acc as a tail-recursive helper function that takes
an accumulator acc as an extra input. In the recursive case, store the current toss in a local
variable before printing it and making the tail-recursive function call. Then you can define
print-and-sum-n-tosses as a wrapper function that calls the helper with appropriate inputs.

Submitting

Don’t forget to submit your work using the submit101 command!

submit101 g-asmt04 asmt04

(If the name of your directory is different from asmt04, change asmt04 to whatever the name
of your directory is.)


