Example 15.2.3: Using `let` to store a randomly generated value

The `toss-die` function is fine, but suppose that you toss a die and want to do several things with the result (e.g., print out the value, print out the square of the value, and so on). The following attempt does not work:

```
> (printf "My toss: " (toss-die))
3
> (printf "The square of my toss: " (* (toss-die) (toss-die)))
10
```

Why? Because each time DrScheme evaluates `(toss-die)`, it may generate a different value. To get the desired behavior, you need some way of storing the value of a single toss, so that you may then refer to it as often as you like. In short, you need a `let` special form, as illustrated below:

```
> (let ((toss (toss-die)))
  (printf "My toss: " toss)
  (printf "The square of my toss: " (* toss toss)))
My toss: 4
The square of my toss: 16
64
> toss
ERROR: reference to undefined identifier: toss
```

In this example, the `let` special form creates a local variable named `toss` whose value is the result of randomly tossing a six-sided die. The expressions in the body of the `let` can then refer to `toss`—and thereby gain access to that stored value—as many times as needed. However, the local environment only exists while the `let` special form is being evaluated. Once the evaluation of the `let` is completed, its local environment evaporates. It is for this reason that any later attempt to evaluate `toss` will cause DrScheme to report an error, as shown above. (This example assumes that there is no entry for `toss` in the Global Environment.)

15.3 Nested `let` Expressions and Nested Environments

When a `let` special form is evaluated with respect to the Global Environment, it creates a local environment, \mathcal{E}_1, that is nested inside the Global Environment. For convenience, we can represent this by writing $\mathcal{E}_1 \subset \mathcal{E}_0$. Any expression in the body of that `let` may refer to any variable in that local environment \mathcal{E}_1, as well as any variable in the Global Environment \mathcal{E}_0, with the proviso that the local environment has priority. For this reason, the following `let` expression evaluates to 25 (i.e., 5 times 5) because the value of the symbol x is fetched from the local environment, not the Global Environment.

```
> (define x 100)
> (let ((x 5))
  (* x x))
25
```

Note that the value of the `asterisk` symbol is fetched from the Global Environment, because there is no entry in the local environment for that symbol. Note, too, that there is no way that an expression in the body of this `let` could refer to the global variable x, because the existence of the local variable x effectively blocks access to the globally defined x.

Continuing in this way, a `let` nested inside another `let` (i.e., a `let` expression that appears in the body of another `let`) creates a new local environment, \mathcal{E}_2, where $\mathcal{E}_2 \subset \mathcal{E}_1 \subset \mathcal{E}_0$. Thus, any expression in the body of
that \textit{let} is evaluated with respect to the environment E_2, which implies that E_2 has the highest priority, E_1 has the next highest priority and, as always, the Global Environment E_0 has the lowest priority. The following example demonstrates that this is the case.

\begin{example}{Example 15.3.1}
\begin{verbatim}
> (define x 100)
> (let ((x 5))
 (let ((x (* x x)))
 (printf "x: \~A\~%" x))
 (printf "x: \~A\~%" x))
 x: 25
 x: 5
> x
100
\end{verbatim}
\end{example}

The \textit{let} special form creates a local variable x, in the environment E_1, whose value is 5. In the body of that \textit{let}, the next \textit{let} creates a different local variable, in the environment E_2, that also happens to be called x. In the environment E_2, the value of x is 25 (i.e., 5 times 5). Note that its value is computed before the creation of the environment E_2; its value is computed with respect to the environment E_1. The first \texttt{printf} expression is evaluated with respect to the innermost environment E_2, where x has the value 25. Since there is no entry for the \texttt{printf} symbol in E_2 or E_1, its value is obtained from the Global Environment E_0. The second \texttt{printf} expression is evaluated with respect to the environment E_1, where x has the value 5.

It is important to point out that since the environment E_2 defines a local variable named x, then any expression evaluated with respect to that environment cannot access any other variable named x that might exist in any of the parent environments (e.g., the variable named x in the environment E_1, or the variable named x in the Global Environment). In the same way, if some local environment has a variable named list, then any expression being evaluated with respect to that local environment cannot access the built-in list function, because the local variable named list would have priority over the globally defined list function.

In general, a \textit{let} expression that is evaluated with respect to some parent environment E creates a new local environment E' that is nested inside E (i.e., $E' \subseteq E$). To evaluate a symbol s with respect to the new environment E', involves the following recursive process:

(Base Case) If there is an entry in the environment E' that pairs s with a value v, then s evaluates to v in E'.

(Recursive Case) Otherwise, the value for s is obtained by evaluating s in the parent environment E.

Note that this process is recursive because if the parent environment does not have an entry for s, then s will have be be evaluated with respect to its parent environment, and so on, until, eventually, an ancestor environment is reached that has an entry for s. Note that if this process goes all the way to the Global Environment without finding any entry for s in any environment along the way (including the Global Environment), then the evaluating s in the environment E' is undefined.

We can describe this process as follows. Since each environment other than the Global Environment is nested inside its parent environment, each environment E_n determines a chain of ancestor environments of the form, $E_n \subseteq E_{n-1} \subseteq \ldots \subseteq E_2 \subseteq E_1 \subseteq E_0$, where E_0 is the Global Environment. When a symbol is being evaluated with respect to the environment E_n, the environment E_n has the highest priority and the Global Environment has the lowest priority. When evaluating a symbol s in the environment E_n, the environments are checked, in order, from E_n to E_0, until one is found that has an entry for s. The value for s in that entry will be the result of evaluating s in E_n.

The same considerations apply to the local environment that is automatically created when a \texttt{lambda} function is applied to inputs. The main thing to remember is:
* If a lambda function \(f \) was created by evaluating a lambda special form with respect to an environment \(E \), then the local environment \(E' \) that is automatically created when \(f \) is applied to inputs is nested inside \(E \): \(E' \subset E \).

The following example illustrates that this is the case.

Example 15.3.2

```scheme
> (let ((x 5))
   (let ((f (lambda (n)
             (printf "Inside function body: x = \"A-%\" x\n" x)
             (* x n))))
    (let ((x 10))
      (f 12)))
Inside function body: x = 5
60
```

The first `let` creates a local environment \(E_1 \) in which \(x \) has the value 5. The second `let` expression creates a local environment \(E_2 \) in which a local variable \(f \) has a function as its value. However, according to the semantics for `let` expressions, recall that the value for \(f \) is obtained by evaluating the lambda special form with respect to the parent environment \(E_1 \). Since \(E_1 \) is the environment within which this lambda function was created, any time this function is applied to inputs, the expressions in its body will be evaluated in a local environment \(E_f \) that is nested inside \(E_1 \): \(E_f \subset E_1 \). For this reason, even though the next `let` expression creates a local environment \(E_3 \) in which \(x \) has the value 10, the evaluation of the expression \((f 12) \) in the environment \(E_3 \) leads to the application of the above lambda function to the input 12 which, in turn, leads to evaluating the body of that function with respect to the environment \(E_f \subset E_1 \), where \(x \) has the value 5.

15.4 Deriving the `let` Special Form from the `lambda` Special Form

If you’re thinking that the evaluation of a `let` special form seems awfully close to the evaluation of a function call, you’re right. In fact, each `let` special form expression is simply a convenient abbreviation for an expression in which a `lambda` function is applied to some input values. Before going into all the details, we give some examples illustrating the equivalence of expressions involving `let` and `lambda`.

Example 15.4.1

The following Interactions Window session shows the evaluation of a `let` expression, followed by the evaluation of an equivalent expression involving the application of a lambda function to some inputs.

```scheme
> (let ((x (+ 2 3))
       (y (* 3 4)))
  (printf "x: \"A, y: \"A-%\" x\n" x)
  (+ x y))
x: 5, y: 12
17
> ((lambda (x y)
    (printf "x: \"A, y: \"A-%\" x\n" (+ x y))
    (+ 2 3)
    (+ 3 4))
  x: 5, y: 12
```
The semantics for the evaluation of the first expression is identical to the semantics for the evaluation of the second expression!

In particular, for the `let` expression, a local environment is set up in which the symbol `x` is associated with the value 5 and the symbol `y` is associated with the value 12. After that, the two expressions in the body of the `let` are evaluated with respect to that local environment yielding some side-effect printing and an output value of 17.

The evaluation of the second expression is governed by the Default Rule for evaluating non-empty lists. The first entry in the list is a `lambda` expression. It evaluates to a function. The other entries, `(+ 2 3)` and `(* 3 4)`, evaluate to the numbers 5 and 12, respectively. When that function is applied to those inputs, a local environment is set up in which `x` and `y` are associated with the values 5 and 12, respectively. Then the body of the `lambda` is evaluated, yielding side-effect printing and the output value 17.

Example 15.4.2

The following Interactions Window session first creates a global variable, `z`. It then evaluates a `let` expression and an equivalent expression involving the application of a `lambda` function.

```
> (define z 1000)
> (let ((x 3)
     (y 4))
   (* x y z))
12000
> ((lambda (x y)
     (* x y z))
  3
  4)
12000
```

Once again, the evaluation of the two expressions is the same. In particular, each involves a local environment containing entries for `x` and `y`, with the respective values 3 and 4. In addition, each involves the evaluation of the expression `(* x y z)` with respect to that local environment. Notice that in each case, the values for `x` and `y` are drawn from the local environment, whereas the value for `z` is drawn from the Global Environment. In each case, the value of the entire expression is 12000.

In general, a `let` expression of the form,

```
(let ((var₁ val₁)
     (var₂ val₂)
     ...
     (varₙ valₙ))
  expr₁
  expr₂
  ...
  exprₖ)
```

is equivalent to the following expression involving the application of a `lambda` function:

```
((lambda (var₁...varₙ)
  expr₁
  expr₂
...)
```
\[
... \\
\text{expr}_k \\
val_1 \ldots val_n)
\]

You should convince yourself that the local environments that are created in response to evaluating these two expressions are equivalent.

- The reason we have \texttt{let} expressions is that they have a friendlier syntax for the cases where you want to create a local environment and then evaluate some expressions with respect to that local environment.

15.5 The \texttt{let*} Special Form

The syntax of the \texttt{let*} special form is nearly identical to that of the \texttt{let} special form. (The only difference is the presence of the \texttt{*} in \texttt{let*}.) However, the semantics is substantially different. In particular, the local environment is populated \textit{incrementally}, as each \texttt{var/val} pair is processed. This difference allows a certain kind of incremental computation that turns out to be quite useful. When a \texttt{let} special form is evaluated, each \texttt{val}_i is evaluated with respect to the parent environment and, thus, none of the \texttt{val}_i expressions can depend on any of the variables in the nascent local environment. In contrast, when a \texttt{let*} special form is evaluated, each \texttt{val}_i is evaluated with respect to the \textit{portion} of the local environment that has been created so far. As a result, the expression \texttt{val}_i \textit{may} depend on the values of the local variables \texttt{var}_1, \ldots, \texttt{var}_{i-1} that precede it in the \texttt{let*} expression.

15.5.1 The Syntax of the \texttt{let*} Special Form

Each \texttt{let*} expression has the following form:

\[
(\text{let*} \ ((\text{var}_1 \ \text{val}_1) \\
(\text{var}_2 \ \text{val}_2) \\
\ldots \\
(\text{var}_n \ \text{val}_n)) \\
\text{expr}_1 \\
\text{expr}_2 \\
\ldots \\
\text{expr}_k)
\]

You’ll notice that the only difference is the asterisk in the name of the special form: \texttt{let*} instead of \texttt{let}.

15.5.2 The Semantics of the \texttt{let*} Special Form

A \texttt{let*} special form is evaluated as follows:

- An empty local environment is created.
- Each \texttt{var/val} pair is processed, in turn. In particular, an entry is created in the local environment that associates the value of \texttt{val}_i with the symbol \texttt{var}_i.

\[\Rightarrow\] Crucially, the \(i\)th entry in the local environment is created \textit{before} the \((i + 1)\)st value is computed. Thus, the expression, \texttt{val}_{i+1}, can refer to \textit{any} of the \textit{preceding} symbols, \texttt{var}_1, \ldots, \texttt{var}_i.
- Then the expressions in the body of the \texttt{let*} are evaluated, in turn.
- The value of the last expression in the body of the \texttt{let*} serves as the value of the entire \texttt{let*} expression.
Example 15.5.1

The following Interactions Window session demonstrates the kind of incremental computation that is characteristic of a `let*` special form, but that is not possible with a (single) `let` special form:

> (let* ((x 4)
 (y (+ x 2))
 (z (* x y))
 (w (+ x y z)))
 (printf "x: ~A, y: ~A, z: ~A, w: ~A\%" x y z w)
 (+ x y z w))
 x: 4, y: 6, z: 24, w: 34
68

Notice that the expression, (+ x 2), that is used to compute the value for y refers to the local variable x. Similarly, the expression, (* x y), that is used to compute the value for z refers to both x and y. Finally, the expression, (+ x y z), that is used to compute the value for w refers to x, y and z. Trying to do this with a `let` expression causes DrScheme to complain.

> (let ((x 4)
 (y (+ x 2))
 (z (* x y))
 (w (+ x y z)))
 (printf "x: ~A, y: ~A, z: ~A, w: ~A\%" x y z w)
 (+ x y z w))
... reference to undefined identifier: x

The reason is due to the difference in the way `let` and `let*` expressions are evaluated (i.e., their semantics). In a `let` expression, all of the value expressions are evaluated first, before any entries are created in the local environment. Thus, none of the value expressions in a `let` can refer to any of the local variables being defined. In contrast, in a `let*` expression, the evaluation of the value expressions is interleaved with the creation of the entries in the local environment. Thus, each value expression can refer to symbols that precede it in the `let*` expression.

15.5.3 Deriving a Single `let*` Expression from Nested `let` Expressions

In general, a `let*` expression of the form,

```
(let* ((var\_1 val\_1)  
       (var\_2 val\_2)  
       ...  
       (var\_n val\_n))  
  expr\_1  
  expr\_2  
  ...  
  expr\_k)
```

is equivalent to n nested `let` expressions:

```
(let ((var\_1 val\_1))  
  (let ((var\_2 val\_2))  
    ...  
    (let ((var\_n val\_n))  
      expr\_1
```


\begin{verbatim}
expr_2 \\
... \\
expr_k
\end{verbatim}

So, a \texttt{let*} expression with \(n\) variable/value pairs effectively creates a sequence of \(n\) new local environments, where each new environment is nested inside its predecessor.

The following example demonstrates the equivalence.

\begin{example}{Example 15.5.2}

The following Interactions Window session evaluates a \texttt{let*} expression and the equivalent \texttt{nested let} expression:

\begin{verbatim}
> (let* ((x 4)
 (y (+ x 2))
 (z (* x y))
 (w (+ x y z)))
 (printf "x: ~A, y: ~A, z: ~A, w: ~A" x y z w)
(+ x y z w))
x: 4, y: 6, z: 24, w: 34
68

> (let ((x 4))
 (let ((y (+ x 2)))
 (let ((z (* x y)))
 (let ((w (+ x y z)))
 (printf "x: ~A, y: ~A, z: ~A, w: ~A" x y z w)
(+ x y z w))))))

x: 4, y: 6, z: 24, w: 34
68
\end{verbatim}

Notice that the outermost \texttt{let} expression (i.e., the one that specifies the local variable \(x\)) has a body that consists of a single \texttt{let} expression (i.e., the one that specifies the local variable \(y\)). Because the \texttt{let} expression for \(y\) is evaluated with respect to the local environment containing an entry for \(x\), it is okay for the value expression, \((+ x 2)\), to refer to \(x\). Similar remarks apply to the remaining variables.

\end{example}

In general, \texttt{let*} provides a simpler syntax than the equivalent set of nested \texttt{let} expressions. Thus, if you ever need to do incremental computations where the value of each local variable depends of the values of the preceding local variables, then you should consider using \texttt{let*}.

\section{15.6 The \texttt{letrec} Special Form}

The \texttt{letrec} special form is provided to enable the specification of local recursive functions, something that cannot be done by \texttt{let} or \texttt{let*}. The specification of a local recursive function within a \texttt{letrec} special form is quite similar to the specification of a global recursive function within a \texttt{define} special form; however, the syntax of a \texttt{letrec} expression is much closer to that of \texttt{let} and \texttt{let*}. A common use of \texttt{letrec} is to embed an accumulator-based, tail-recursive helper function \texttt{within} the body of its wrapper function. In this way, the existence of the helper function (and access to it) can be hidden from the general programming public. As usual, in such scenarios, the wrapper function takes care of supplying appropriate inputs to the helper function, freeing the user to think about other things.
15.6.1 The Syntax of the letrec Special Form

The syntax of the letrec special form is identical to that of the let and let* special forms, except that the keyword is letrec instead of let or let*.

15.6.2 The Semantics of the letrec Special Form

In sharp contrast to how the let and let* special forms are evaluated, the evaluation of a letrec special form begins by creating the entire local environment, complete with entries for all of the local variables, before evaluating any of the value expressions. Because none of the value expressions have yet been evaluated, each local variable is initially given the dummy value, #<undefined>. However, since all of the local variables have corresponding entries in the local environment before any of the value expressions are evaluated, each value expression can refer to any or all of the local variables, whether they have values or not!

Example 15.6.1

The following interactions demonstrate that the letrec special form sets up its local environment before evaluating any of the value expressions. Because the let and let* special forms do not do this, the corresponding instances generate errors.

```scheme
> (let ((x y)
       (y x))
   (printf "x:\%, y:\%\n" x y))
ERROR: reference to undefined identifier: y
> (let* ((x y)
       (y x))
   (printf "x:\%, y:\%\n" x y))
ERROR: reference to undefined identifier: y
> (letrec ((x y)
           y)
   (printf "x:\%, y:\%\n" x y))
```

The preceding example is illustrative, but it ignores the primary purpose of the letrec special form: to create local recursive functions, similar to how the define special form can be used to create global recursive functions. For example, a letrec can be used to create a local variable funky whose value is a function whose body includes a recursive function call of the function named funky.

Example 15.6.2: Using letrec to create a local recursive function

The following interactions demonstrate that letrec can be used to define a local recursive function, whereas let and let* cannot.

```scheme
> (let ((factyOne (lambda (n)
                   (if (<= n 1)
                       1
                       (* n (factyOne (- n 1))))))
       (printf "No error up to this point, but ...\n" (factyOne 4))
    No error up to this point, but ...
ERROR: reference to undefined identifier: factyOne
> (let* ((factyTwo (lambda (n)
```
In the first example, the let expression creates a local environment E_1 that is nested inside the Global Environment. According to the semantics for a let, the value for its variable factyOne is evaluated with respect to the parent environment—in this case, the Global Environment. The result is a lambda function created with respect to the Global Environment. As the side-effect printing indicates, the evaluation of that lambda expression does not cause an error—because the expressions in the body are not evaluated when the function is created. However, attempting to apply the function to some numerical input requires evaluating the expressions in the function body—with respect to an automatically-created local environment E_f that is nested inside the Global Environment (i.e., the environment within which the function was created). Because there is no entry for factyOne in the Global Environment, this leads to an error.

Similar remarks apply to the let* expression because a let* that includes only one variable/value pair is equivalent to a let. However, for the letrec expression, there are no problems. It creates a local environment E_1 that contains an entry for the variable factyThree, with a placeholder value of undefined, and then evaluates the value expression (i.e., the lambda expression) with respect to the environment E_1. Thus, the lambda function is created with respect to the environment E_1. Subsequently applying this function to a numerical input causes the body of the function to be evaluated with respect to the environment E_1, because that is the environment within which the function was created. Since E_1 contains an entry for factyThree, all is well.

Although this example is also illustrative, it seems kind of silly to create a function like factyThree to use it only once. The following example highlights are more common, useful way of using letrec.

Example 15.6.3: Using letrec to create a local recursive function within a wrapper function

The following interactions demonstrate the use of the letrec special form to create a local recursive (helper) function within the body of a wrapper function. In this case, the wrapper function is facty, and the local recursive (helper) function is the accumulator-based, tail-recursive facty-acc function. Aside from defining facty-acc, the only thing that facty does is to call facty-acc with appropriate inputs.

```
> (define facty
  (lambda (n)
    ;; Body of FACTY starts here
    (letrec ((facty-acc (lambda (m acc)
                           ;; Body of FACTY-ACC starts here
                           (if (<= m 1)
                               acc
                               (facty-acc (- m 1) (* m acc)))))))))
```

;; Body of LETREC starts here
(facty-acc n 1))))
> (facty 4)
 24
> (facty 5)
 120

This kind of application of letrec is commonly used to hide the existence of a recursive helper function from users who may not understand what inputs to give it, or may not want to be bothered with thinking about what inputs to give it. The helper function only exists for use by the parent function; it is not visible to the general programming public. The parent function (facty) takes care of supplying the helper function (facty-acc) with appropriate inputs.

* Take care when defining local recursive helper functions. For example, note the difference between the input \(n \) to facty and the input \(m \) to facty-acc. On successive recursive function calls, \(m \) takes on different values, while \(n \) never changes.

In-Class Problem 15.6.1

Carefully draw a diagram that shows all of the relevant environments, and the variable/value pairs in those environments, for the evaluation of (facty 4) from the preceding example.

Special Forms Introduced in this Chapter

<table>
<thead>
<tr>
<th>Special Form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>let</td>
<td>Create local environment</td>
</tr>
<tr>
<td>let*</td>
<td>Create local environment, supports incremental computations</td>
</tr>
<tr>
<td>letrec</td>
<td>Create local environment, supports recursive function definitions</td>
</tr>
</tbody>
</table>

Built-in Functions Introduced in this Chapter

<table>
<thead>
<tr>
<th>Built-in Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random</td>
<td>Pseudo-random number generator (an impure function)</td>
</tr>
</tbody>
</table>
Chapter 16

Lists and List-Based Recursion

Previous chapters have highlighted the many important roles that non-empty lists play in Scheme’s computational model. For example, the Default Rule for evaluating non-empty lists can be used to apply functions to inputs, the define special form can be used to assign values to variables, the quote special form can be used to shield a datum from evaluation, and so on. In contrast, this chapter focuses on lists as containers of data. When viewing lists as containers of data, we typically don’t want them to be evaluated. In addition, to do any meaningful computations involving lists (e.g., to sort a list of numbers or recursively walk through a list of data), we need to be able to access the individual elements. Finally, we will often want to be able to construct lists incrementally, for example, by attaching a new element to the front of a list.

Scheme provides the following built-in functions to facilitate the use of lists as containers of data:

- first to access the first element of a list
- rest to access the rest of a list
- cons to construct a new list by attaching a new element to the front of an existing list

These few functions, together with the null? type-checker predicate from Chapter 8, will enable us to design functions that can recursively process the elements in a list.

We shall see that list-based recursion is quite similar to numerical recursion. Whereas numerical recursion is driven by the size of a numerical input, list-based recursion is driven by some feature of a list—usually whether that list is empty or not. In list-based recursion, there is a base case—usually signaled by the empty list (analogous to \(n = 0 \)); and there is a recursive case—usually signaled by a non-empty list (analogous to \(n > 0 \)). And, just as a numerical-recursive function can typically process numerical inputs of any size, a list-based recursive function can typically process lists containing any number of elements.

16.1 The Built-in Functions: first, rest and cons

This section describes the built-in functions, first, rest and cons, that Scheme provides to enable us to access parts of lists, and to attach new elements to pre-existing lists.

The first and rest accessor functions. The first and rest functions are called accessor functions because they enable us to access certain parts of a non-empty list. The contracts for these built-in functions are given below.

```scheme
;; FIRST -- built-in function
;; --------------------------------------------------------
;; INPUT: LISTY, a non-empty list
;; OUTPUT: The FIRST element of LISTY
```
REST -- built-in function

INPUT: LISTY, a non-empty list
OUTPUT: The REST of LISTY (i.e., the portion of LISTY that contains all but its first element)

* Note that the rest of a non-empty list is necessarily a list.

Example 16.1.1

The following Interactions Window session demonstrates the use of the first and rest accessor functions to access the parts of a non-empty list.

```
> (first '(a b c d e))
  a
> (rest '(a b c d e))
  (b c d e)
> (first '(64))
  64
> (rest '(64))
  () ← the rest is a list, even if it is empty
```

Example 16.1.2: Accessing other elements of a non-empty list

We can combine the first and rest functions to access any individual element of a list, as follows:

```
> (first (rest '(a b c d e))) ← access second element
  b
> (first (rest (rest '(a b c d e)))) ← access third element
  c
> (first (rest (rest (rest '(a b c d e))))) ← access fourth element
  d
```

Rather than re-typing these sorts of cumbersome expressions to access various elements of a list, we can define functions to simplify the process, as illustrated below:

```
;; SEKUND/THURD/ORTH
;; -----------------------------
;; INPUT: LISTY, a list containing at least two elements  
;; OUTPUT: The second/third/fourth element of LISTY

(define sekund
  (lambda (listy)
    (first (rest listy))))

(define thurd
  (lambda (listy)
    (first (rest (rest listy))))))

(define forth
  (lambda (listy)
    (first (rest (rest (rest listy))))))
```
The following interactions demonstrate the use of these functions:

> (sekund '(a b c d e))
b
> (thurd '(yes #t 383 () why))
383
> (forth '(my bonnie lies over the ocean))
over

Although we could continue in this fashion, defining additional accessor functions called fifth, sixth, and so on, we shall soon discover that there is a much easier way to access any desired element of a list: using recursion! In the meantime, you should know that Scheme provides a slew of built-in functions for accessing individual elements of a list in the manner seen above. They are called second, third, fourth, etc. As you may have guessed, the existence of these built-in functions is the reason that I gave names such as sekund, thurd and forth to the functions defined above.

In-Class Problem 16.1.1: Checking for a one-element list

Define a function, called one-elt-list?, that satisfies the following contract:

;;; ONE-ELT-LIST?
;;; --
;;; INPUTS: LISTY, any list
;;; OUTPUT: #t if LISTY contains exactly one element; #f otherwise.

Here are some examples of the desired behavior:

> (one-elt-list? ())
#f
> (one-elt-list? '(xyz))
#t
> (one-elt-list? '(a b c d))
#f

Hint: Use some of these: null?, first, rest.

Using cons to construct a new list. The built-in cons function constructs a new list by attaching a new element onto the front of an existing list. Here is its contract:

;;; CONS -- built-in function
;;; --
;;; INPUTS: FST, any Scheme datum
;;; RST, a list (either empty or non-empty)
;;; OUTPUT: A new list whose FIRST element is FST, and
;;; the REST of whose elements are RST.

* When using the cons function to construct a new list, the second input must be a list!
Example 16.1.3

The following Interactions Window session demonstrates the use of the cons function.

> (cons 8 '(a b c))
(8 a b c)
> (cons 'john '(paul george ringo))
(john paul george ringo)
> (cons 64 ()) ← the second input must be a list, even if it is empty
(64)
> (define my-list '(a b c))
> (define new-list (cons 'x my-list))
> new-list
(x a b c)
> my-list
(a b c)

The last example shows that the cons function is non-destructive. The new list (x a b c) formed by attaching x to the front of my-list does not change my-list.

In-Class Problem 16.1.2: Using cons to create short lists

Define functions, called list-one and list-two, that satisfy the following contracts:

;; LIST-ONE
;; ---
;; INPUT: DATUM, anything
;; OUTPUT: A list that contains DATUM as its only element

;; LIST-TWO
;; ---
;; INPUTS: ONE, TWO, anything
;; OUTPUT: A list whose first element is ONE, and whose second element is TWO

Here are examples of the desired behavior:

> (list-one 'a)
(a)
> (define listy '(a b c))
> (define symby 'xyz)
> (list-one listy)
((a b c))
> 'listy ← quote produces different results!
listy
> (list-one symby)
(xyz)
> 'symby ← quote produces different results!
symby
> (list-two 'a 'b)
(a b)
> (list-two listy symby)
((a b c) xyz)
> '(listy symby) ← quote produces different results!
(listy symby)

Hint: Use the built-in cons function.

There is a built-in function, called *list*, that takes any number of inputs. It returns as its output a list containing those inputs, as illustrated below:

> (list 'a (+ 2 3) #f)
(a 5 #f)

Notice the difference between result obtained from the above example and that obtained by evaluating the following quote special form.

> '(a (+ 2 3) #f)
(a (+ 2 3) #f)

16.2 List-based Recursion

Chapter 12 introduced recursive functions for which the recursion was driven by the size of a number. For example, in the factorial function (cf. Example 12.1.1), \(f(4) \) was computed by multiplying 4 by \(f(3) \), where \(f(3) \) was computed by multiplying 3 by \(f(2) \), where \(f(2) \) was computed by multiplying 2 by \(f(1) \), and where \(f(1) = 1 \) terminated the recursion. The relevant sequence of computations is shown below:

\[
\begin{align*}
 f(4) & = 4 \cdot f(3) \\
 & = 4 \cdot (3 \cdot f(2)) \\
 & = 4 \cdot (3 \cdot (2 \cdot f(1))) \\
 & = 4 \cdot (3 \cdot (2 \cdot 1)) \\
 & = 4 \cdot 3 \cdot 2 \\
 & = 4 \cdot 6 \\
 & = 24 \\
\end{align*}
\]

More generally, for any \(n > 1 \), the factorial of \(n \) can be computed by making a sequence of \(n - 1 \) recursive function calls, terminating in the base case, where \(f(1) = 1 \). Of course, numerical recursion can take many forms. For example, the input \(n \) might start out at 0 and increase by 3 on each recursive function call until some stopping value (e.g., 90) is reached. Or the value of \(n \) might be multiplied by some value at each recursive function call. But the common feature is that deciding between the base case and the recursive case is based on the size of some number.

This section introduces *list-based recursion*. In list-based recursion the recursion is driven not by the size of a number, but by some feature of a list. In many cases, the relevant feature is simply whether a certain list is empty or not: if the list is empty, we’re in the base case; otherwise, we’re in the recursive case. For example, if a typical recursive function is applied to a list containing, say, five elements, then, because that list is non-empty, a recursive function call will be made on the *rest* of that list (i.e., a list containing four elements). And because that list is non-empty, another recursive function call will be made, this time on the *rest* of that list (i.e., a list containing three elements). The sequence of recursive function calls will eventually lead to the function being applied to the empty list, at which point the base case will terminate the recursion. This common kind of list-based recursion is explored in the following example.

Example 16.2.1

Suppose we are given the following contract for a function called mult-all:

;; MULT-ALL
;; INPUT: LISTY, a list of numbers
;; OUTPUT: The product of all the elements of LISTY

Here are some examples of the desired behavior:

> (mult-all '(2 3 4 10))
 240
> (mult-all '(10 2 4))
 80

This function can be defined recursively since:

\[(\text{the product of all of the elements of a non-empty list})\]
\[= \begin{cases}
 \text{(the first element of the list)} & \times \\
 \text{(the product of the rest of the elements of the list)}
\end{cases}\]

For example:

\[(\text{the product of all of the elements of } (2 3 4 10))\]
\[= \begin{cases}
 2 & \times \\
 \text{(the product of all of the elements of } (3 4 10))
\end{cases}\]

Stated in terms of the mult-all function, where listy is a variable whose value is \((2 3 4 10) \):

\[(\text{mult-all listy}) \Rightarrow (* \text{ (first listy)} \text{ (mult-all (rest listy))})\]

Note that if this relationship is going to hold for all non-empty lists, then \((\text{mult-all ()}) \) must evaluate to 1 (i.e., the multiplicative identity), as illustrated below:

\[(\text{mult-all '(4)}) \Rightarrow (* 4 \text{ (mult-all ())}) \Rightarrow (* 4 1) \Rightarrow 4\]

In view of all of the above, we might imagine the evaluation of \((\text{mult-all '(2 3 4 10)}) \) proceeding as follows, where, for example, the recursive function call on the rest of the list \((2 3 4 10) \) is represented by \((\text{mult-all '(3 4 10)}) \):

\[(\text{mult-all '(2 3 4 10)}) \Rightarrow (* 2 \text{ (mult-all '(3 4 10))}) \quad \text{ Recursive Case}\]
\[\Rightarrow (* 2 (* 3 \text{ (mult-all '(4 10)))))) \quad \text{ Recursive Case}\]
\[\Rightarrow (* 2 (* 3 (* 4 \text{ (mult-all '(10)))))) \quad \text{ Recursive Case}\]
\[\Rightarrow (* 2 (* 3 (* 4 (* 10 \text{ (mult-all ())})))) \quad \text{ Recursive Case}\]
\[\Rightarrow (* 2 (* 3 (* 4 (* 10 1)))) \quad \text{ Base Case}\]
\[\Rightarrow (* 2 (* 3 (* 4 10))) \]
\[\Rightarrow (* 2 (* 3 40)) \]
\[\Rightarrow (* 2 120) \]
\[\Rightarrow 240 \]
As long as the list in question is non-empty, the recursive case evaluates an expression of the form
\((\ast{\text{(first some-list)}}) (\text{mult-all (rest some-list)})\). However, when the list in question is empty, the base case is reached, terminating the recursion. These sorts of considerations lead to the following solution:

\[
\text{(define mult-all}
\begin{array}{l}
\text{(lambda (listy))}
\end{array}
\begin{array}{l}
\text{(cond}
\end{array}
\begin{array}{l}
\text{;; Base Case: LISTY is empty}
\end{array}
\begin{array}{l}
\text{((null? listy)}
\end{array}
\begin{array}{l}
\text{;; The product of all the elements of the empty list is}
\end{array}
\begin{array}{l}
\text{1)
\end{array}
\begin{array}{l}
\text{;; Recursive Case: LISTY is non-empty (and so we can use}
\end{array}
\begin{array}{l}
\text{;; the FIRST and REST accessor functions on LISTY)}
\end{array}
\begin{array}{l}
\text{(else)
\end{array}
\begin{array}{l}
\text{;; The product of all of the elements of LISTY is obtained}
\end{array}
\begin{array}{l}
\text{;; by multiplying the FIRST element of LISTY by the}
\end{array}
\begin{array}{l}
\text{;; product of all of the REST of the elements of LISTY.}
\end{array}
\begin{array}{l}
\text{;; The latter job is handled by the recursive func. call.}
\end{array}
\begin{array}{l}
\text{(* (first listy)}
\end{array}
\begin{array}{l}
\text{\text{(mult-all (rest listy))))))}
\end{array}
\end{array}
\end{array}
\]

Example 16.2.2: Summing the numbers in a list

The following defines a \text{sum-all} function that sums the numbers in the input list. Its structure is similar to that of the \text{mult-all} function.

\[
\text{;; SUM-ALL}
\text{;; --}
\text{;; INPUT: LISTY, a list of numbers}
\text{;; OUTPUT: The sum of all the elements of LISTY}
\text{(define sum-all}
\text{(lambda (listy))}
\text{(cond}
\text{;; Base Case: LISTY is empty}
\text{((null? listy)}
\text{;; The sum of all the elements of the empty list}
\text{0)}
\text{;; Recursive Case: LISTY is non-empty}
\text{(else)
\text{;; The recursive function call computes the sum of all}
\text{;; the numbers in the rest of LISTY; we just add on the}
\text{;; first element.}
\text{(+ (first listy) (sum-all (rest listy))))))}
\]

\[
\begin{array}{l}
\text{> (sum-all '(1 2 3 4))}
\end{array}
\begin{array}{l}
10
\end{array}
\begin{array}{l}
\text{> (sum-all '(1 10 100 1000))}
\end{array}
\begin{array}{l}
1111
\end{array}
\begin{array}{l}
\text{> (sum-all '(2 5 3 8 1))}
\end{array}
\]
In-Class Problem 16.2.1

Define a function, called add-squares, that satisfies the following contract:

;;; ADD-SQUARES
;;; ---
;;; INPUT: LISTY, a list of numbers
;;; OUTPUT: The sum of the squares of the numbers in LISTY

Here are some examples of the desired behavior:

> (add-squares '(2 3 10)) \rightarrow 2^2 + 3^2 + 10^2 = 4 + 9 + 100 = 113
 113
> (add-squares '(1 0 5 2)) \rightarrow 1^2 + 0^2 + 5^2 + 2^2 = 1 + 0 + 25 + 4 = 30
 30

In-Class Problem 16.2.2: Computing the length of a list

Define a function, called lengthy, that computes the number of elements of the input list. Here is its contract:

;;; LENGTHY
;;; ---
;;; INPUT: LISTY, any list
;;; OUTPUT: The number of elements of LISTY (i.e., its length)

Here are some examples of the desired behavior:

> (lengthy '(a b c d e)) \rightarrow \text{5 elements}
 5
> (lengthy '(#t () 22 xyz)) \rightarrow \text{4 elements}
 4

Hints: Use list-based recursion. What’s the relationship between the length of listy and the length of (rest listy)? And how many elements are in the empty list?

Incidentally, now that you know how to define a function to compute the length of a list, it’s time to tell you that there is a built-in function, called length, that does just that!

In-Class Problem 16.2.3: Accessing the Nth element of a list

Define a function, called fetch-nth-element, that satisfies the following contract:

;;; FETCH-NTH-ELEMENT
;;; ---
;;; INPUTS: LISTY, a list
;;; N, a non-negative integer treated as an "index"
;; OUTPUT: Returns the Nth element of LISTY
;; (or #f if LISTY doesn’t have an Nth element)
;; NOTE: The elements of LISTY are indexed starting at 0.

Thus, for example, a is considered to be the zeroeth element of the list (a b c d e), while c is considered to be the element with index 2. Thus, the elements in a list containing five elements will have indices ranging from 0 to 4, inclusive. Here are some examples of the behavior of the fetch-nth-element function:

```scheme
> (fetch-nth-element '(a b c d e) 0)
a
> (fetch-nth-element '(a b c d e) 2)
c
> (fetch-nth-element '(a b c d e) 8)
#f
```

Incidentally, now that you know how to implement the fetch-nth-element function, I can tell you that there is a built-in function, called list-ref, that does the same thing. Like fetch-nth-element, the list-ref function treats the first element of a list as having index 0.

Example 16.2.3

Suppose we want to define a function called is-elt-of? that satisfies the following contract:

```scheme
;; IS-ELT-OF?
;; _____________________________
;; INPUTS: ITEM, anything
;;          LISTY, a list of stuff
;; OUTPUT: #t (or something that counts as true) if ITEM
;;          appears as an element of LISTY -- as judged by EQ?
;; #f otherwise.
```

Here are examples of the desired behavior:

```scheme
> (is-elt-of? 3 '(3 4 5))
#t
> (is-elt-of? 3 '(1 2 3 4 5))
#t
> (is-elt-of? 'x '(a b a b a))
#f
```

Consider the first example, where ITEM is 3, and LISTY is (3 4 5). In this case, it is clear that ITEM appears in LISTY because it appears as the first element. (Notice that this is a kind of base case since, once we find an occurrence of ITEM in LISTY, there is no need to continue looking any further.) On the other hand, in the second example, where ITEM is 3, and LISTY is (1 2 3 4 5), it is true that ITEM appears in LISTY because, as a sequence of recursive functions call might discover, ITEM appears somewhere in the rest of LISTY. Finally, in the third example, where ITEM is x, and LISTY is (a b a b a), we could imagine a sequence of recursive function calls that never discover an occurrence of x, eventually leading to the base case: (is-elt-of? ’x ()), which must evaluate to #f, since nothing can appear as an element of the empty list.

In view of these considerations, we are led to the following solution:
(define is-elt-of?
 (lambda (item listy)
 (cond
 ;; Base Case 1: LISTY is EMPTY
 ((null? listy)
 #f)
 ;; Base Case 2: ITEM appears as first element of LISTY
 ((eq? item (first listy))
 #t)
 ;; Recursive Case: Haven’t found ITEM in LISTY yet
 (else
 ;; Keep looking
 (is-elt-of? item (rest listy))))))

Notice that we must check whether LISTY is empty before trying to use first or rest, since those accessor functions can only be used on non-empty lists.

Example 16.2.4: The built-in member function

Now that you know how to define the is-elt-of? function, I can tell you that there is a built-in function, called member, that does the same thing! The only difference is that the value returned by member, in cases where it finds ITEM in LISTY, is the portion of LISTY that starts from the first occurrence of ITEM, as illustrated below:

> (member 3 '(1 2 3 4 5))
(3 4 5)
> (member 'x 'a b c d e f x y z))
(x y z)

Recall that anything other than than #f counts as true. So, expressions such as the following are handled appropriately:

> (if (member 3 '(1 2 3 4 5)) 'say_yes 'say_no)
say_yes

In this case, the condition evaluated to the list (3 4 5), which counts as true, so the if special form evaluated the expression 'say_yes, generating the output value say_yes. For this reason, it does no harm for member to return something that counts as true. Furthermore, in some cases, you might be glad to have access to the list returned by member as its output.

Example 16.2.5: An alternative implementation of is-elt-of?

Recall from Section 13.3 that, when defining a predicate (i.e., a function that returns a boolean value), one can often write the body of the function using the boolean operators, and, or and not, instead of the conditional expressions, if or cond. Recall further that:

* When defining a predicate using only the boolean operators, the body of the predicate should specify the conditions under which the predicate should output the value #t (or something that counts as true).
Regarding (is-elt-of? item listy), we know that it will evaluate to #f if listy is empty; therefore, it can only evaluate to #t if listy is non-empty. However, that is not enough. In addition, we need to find item somewhere in listy. What are the possibilities? Well, item can appear either as the first element of listy, or somewhere in the rest of listy. These considerations lead to the following alternative definition of the is-elt-of? function. To distinguish the two versions, we call this one is-elt-of-alt?.

(define is-elt-of-alt? (lambda (item listy)
 ;; The following expression specifies the conditions under
 ;; which this function should output #t (or something that
 ;; counts as true):
 ;; (1) LISTY must NOT be empty;
 ;; AND
 ;; (2) ITEM must appear as the FIRST element of LISTY
 ;; OR
 ;; ITEM must appear somewhere in the REST of LISTY
 (and (not (null? listy))
 (or (eq? item (first listy))
 (is-elt-of-alt? item (rest listy))))))

Try using this function in the Interactions Window to confirm that it works as advertised.

In-Class Problem 16.2.4: Is a list of numbers in increasing order?

Define a function, called incr?, that satisfies the following contract:

```
;; INCR?
;; -------------------------------
;; INPUT: LISTY, a non-empty list of numbers
;; OUTPUT: #t if the numbers in LISTY are in strictly
;;         *increasing* order; #f otherwise
```

Here are some examples illustrating its behavior:

```
> (incr? '(1 3 8 9 15))
#t
> (incr? '(1 3 4 4 6 9))  ← Not strictly increasing
#f
> (incr? '(2 5 8 5 2))
#f
```

* What’s the best way of checking whether the input list contains exactly one element?

Write one version of incr? that uses if or cond, and another that uses some combination of and, or and not.
Example 16.2.6: Printing a histogram

The goal for this example is to define a function, called `print-histy`, that satisfies the following contract:

```scheme
;; PRINT-HISTY
;; ----------------------------------------
;; INPUT: LISTY, a list of non-negative integers
;; OUTPUT: None
;; SIDE EFFECT: Displays a histogram in the Interactions Window
;; based on the numbers in LISTY. In particular, for each
;; number in LISTY, prints one row of that many asterisks.
```

Here are some examples of the desired behavior:

```
> (print-histy '(3 2 8 4 6))
***
**
********
****
******
> (print-histy '(1 2 3 4))
*
**
***
****
```

Consider the first example: `(print-histy '(3 2 8 4 6))`. The beauty of recursive programming is that we can write a function that explicitly does only a small part of the job, while leaving most of the work to the recursive function call. For example, to print out the desired histogram, we can just print out the first row of 3 asterisks, and then let the recursive function call take care of printing the rest of the histogram, based on the rest of the list (i.e., `(2 8 4 6)`). Of course, in the base case, when the list is empty, we’re all done!

```scheme
(define print-histy
  (lambda (listy)
    (cond
      ;; Base Case: LISTY is empty
      ((null? listy)
        ;; Use the built-in VOID function to do ... nothing!
        (void))
      ;; Recursive Case: LISTY is non-empty
      (else
        ;; Use a helper function to print one row of the histogram
        (print-n-stars (first listy))
        ;; Then print out the rest of the histogram
        (print-histy (rest listy))))))
```

Notice that since there’s nothing to do in the base case, we just use the built-in `void` function to do … nothing! (Recall from Section 2.1.4, the `void` function actually outputs the special `void` value which DrScheme interprets as “no output”.) Here’s the helper function, which is a slight re-write of the `print-n-dashes` function from Example 14.2.1:
Finally, note that because the print-histy function does nothing in the base case, returning void as its output, the print-histy function can be re-written as follows, using the when special form.

(define print-histy
 (lambda (listy)
 ;; Base Case: LISTY is empty, do nothing.
 ;; Recursive Case: LISTY is non-empty
 (when (not (null? listy))
 ;; Use a helper function to print one row of the histogram
 (print-n-stars (first listy))
 ;; Then print out the rest of the histogram
 (print-histy (rest listy))))))

Because this simplification effectively hides the base case, a comment has been inserted to remind the reader that the base case is implicitly handled by when returning void.

16.3 Recursively Generating Lists as Output Values

So far, we have seen examples of recursive functions where the recursion is driven by a list, and the output has been a number, a boolean, or void—along with some side-effect printing. This section addresses list-based recursion where the output value is a list that has been incrementally generated by the recursive function calls. The incremental generation of lists is accomplished using the built-in cons function, introduced in Section 16.1.

Example 16.3.1: Doubling all the elements of a list

Suppose we want to define a function, called double-all, that satisfies the following contract:

;; DOUBLE-ALL
;; --
;; INPUT: LISTY, a list of numbers
;; OUTPUT: A list of numbers, each of whose elements
;; is twice the corresponding element in LISTY.

Here are some examples of the desired behavior:

> (double-all '(3 2 10 13))
(6 4 20 26)
> (double-all '(5 3 8))
(10 6 16)

Let’s apply some recursive thinking to the first example: (double-all '(3 2 10 13)). We can generate the desired output list (6 4 20 26) as follows.

(1) Consider the following pieces of the desired output list, (6 4 20 26):

(2)

(3)

(4)

(5)
• **Its first element:** 6
• **The rest of its elements:** (4 20 26)

(2) **Fetch the corresponding pieces of the input list, (3 2 10 13):**
• **Its first element:** 3
• **The rest of the list:** (2 10 13)

(3) **Do the following to the corresponding pieces of the input list:**
• **Double the first element:** \((* \ 2 \ 3) \Rightarrow 6\)
• **Use a recursive function call to double the rest of the elements:**
 \[(\text{double-all } '(2 \ 10 \ 13)) \Rightarrow (4 \ 20 \ 26)\]

(4) **Use the above pieces to construct the desired output list using cons:**
• \((\text{cons } 6 \ '(4 \ 20 \ 26)) \Rightarrow (6 \ 4 \ 20 \ 26)\)

We can more concisely describe the process outlined above, as follows. If \(\text{listy}\) is a non-empty list, the element-wise doubling of \(\text{listy}\) can be obtained by the following expression:

\[(\text{double-all } \text{listy}) \Rightarrow (\text{cons } (* \ 2 \ \text{(first listy)}) \ (\text{double-all } \text{(rest listy)}))\]

Before jumping to the completed function definition, we need to determine what should happen in the base case, where the input list is empty. There are two things to consider:

• **The list obtained by doubling each element of the empty list is ... the empty list:**
 \[(\text{double-all } ()) \Rightarrow ()\].

• **When the input list is a one-element list, the recursive rule described above looks like this:**
 \[(\text{double-all } '(4)) \Rightarrow (\text{cons } (* \ 2 \ 4) \ (\text{double-all } ()))\]
 \[\Rightarrow (\text{cons } 8 ()\)
 \[\Rightarrow (8)\]

Therefore, whether we consider the base case in isolation—what should \(\text{double-all}\) do to the empty list based on the contract?—or we consider the base case as the terminating case of a sequence of recursive function calls, we conclude that \(\text{double-all } ()\) should evaluate to ()

Here's the finished product:

```
(define double-all
  (lambda (listy)
    (cond
      ;; Base Case: LISTY is empty
      ((null? listy)
        ;; The double-all of () is ...
        (())
      ;; Recursive Case: LISTY is non-empty
      (else
        ;; Double the first element and attach it to the
        ;; double-all of the rest of the list
        (cons (* 2 (first listy))
          (double-all (rest listy))))))))
```
Example 16.3.2: Applying a given function to each element of a list

Recall the `facty` function seen in Example 12.1.1. It takes a single number as its input, and returns the factorial of that number as its output:

```scheme
> (facty 3)
6
> (facty 5)
120
```

For this exercise, we want to define a function called `mappy` that takes two inputs: (1) a function `func` that, like `facty`, can be applied to a single input, and (2) a list `listy`, each of whose elements is a suitable input for `func`. The expression `(mappy func listy)` should generate as its output the list whose elements are obtained by applying `func`, in turn, to each of the elements of `listy`. Here are some examples:

```scheme
> (mappy facty '(3 4 5 6))
(6 24 120 720)
> (mappy even? '(1 2 3 4 5 6))
(#f #t #f #t #f #t)
> (mappy abs '(1 -1 2 -2 3 -3))
(1 1 2 2 3 3)
```

The last expression uses the built-in `abs` function, which computes the absolute value of its input. As in Example 16.3.1, we analyze this problem by thinking recursively, using a concrete example:

```
(mappy facty '(3 4 5 6))
```

1. The parts of the desired output list:
 - Its first element: 6
 - The rest of its elements: (24 120 720)

2. The corresponding parts of the input list:
 - Its first element: 3
 - The rest of its elements: (4 5 6)

3. Do the following to the pieces of the input list:
 - Apply `facty` to the first element: `(facty 3) => 6`
 - Let a recursive function call apply `facty` to the rest of the elements:
 `(mappy facty '(4 5 6)) => (24 120 720)`

4. Use the `cons` function to combine the above pieces:
 - `(cons 6 '(24 120 720)) => (6 24 120 720)`

The above analysis suggests that for a non-empty list `listy`, the following expression will evaluate to the desired result:

```
(mappy func listy) => (cons (func (first listy))
                        (mappy func (rest listy)))
```

In addition, you should convince yourself that, as in Example 16.3.1, the base case, `(mappy func ())`, should evaluate to `()`. Here is the completed solution.
;; MAPPY
;; --
;; INPUTS: FUNC, a function that takes a single input
;; LISTY, a list of suitable inputs for FUNC
;; OUTPUT: A list whose elements are obtained by applying
;; FUNC to each of the elements of LISTY, in turn.

(define mappy
 (lambda (func listy)
 (cond
 ;; Base Case: LISTY is empty
 ((null? listy)
 ;; Applying FUNC to each element of the empty list
 ;; yields ... the empty list
 ())
 ;; Recursive Case: LISTY is non-empty
 (else
 ;; Apply FUNC to the FIRST element of LISTY, and then
 ;; use CONS to attach the result to the front of the
 ;; list obtained from the recursive function call on
 ;; the REST of LISTY.
 (cons (func (first listy))
 (mappy func (rest listy)))))))

Incidentally, now that you know how to implement the mappy function, I can tell you that there is a built-in function, called map, that does the same thing. The following example illustrates how the map function can be used to facilitate testing.

Example 16.3.3: Using map to facilitate testing

Suppose that you have defined a function, called square, that squares its input. Instead of writing several tester expressions to test the performance of square on several inputs, you can write just one tester expression, using map to apply square to several inputs:

> (tester '(map square '(1 2 3 4 10 25)))
(map (square '(1 2 3 4 10 25))) ==> (1 4 9 16 100 625)

In-Class Problem 16.3.1: Removing items from a list

Define a function, called remover, that satisfies the following contract:

;; REMOVER
;; --
;; INPUTS: ITEM, anything
;; LISTY, a list
;; OUTPUT: A list that contains all of the elements of
;; LISTY, except any occurrences of ITEM.

Here are some examples:

> (remover 3 '(1 2 3 4 5 4 3 2 1))
(1 2 4 5 4 2 1)
> (remover 'a'(a b r a c a d a b r a))
(b r c d b r)

Incidentally, now that you know how to implement the remover function, I can tell you that there is a built-in function, called remove, that does the same thing, except that it only removes the first occurrence of item from listy.

The following example implements a function that takes two input lists, but uses only one to drive the recursion.

In-Class Problem 16.3.2: Concatenating two lists

Define a function, called conc, that satisfies the following contract:

;; CONC
;; ---
;; INPUTS: LISTY, LISTZ, two lists
;; OUTPUT: A list containing all of the elements of LISTY
;; followed by all of the elements of LISTZ.

Here are some examples of the desired behavior:

> (conc '(1 2 3 4) '(a b c))
(1 2 3 4 a b c)
> (conc '(a b c) '(1 2 3 4))
(a b c 1 2 3 4)

Hints: Let listy drive the recursion. What is the output when listy is empty?

Now that you know how to implement the conc function, I can tell you that there is a built-in function called append that does the same thing!

The preceding examples showed how a recursive function can be used to incrementally generate a new list as its output. In each case, some input list was driving the recursion. However, as the following examples show, functions whose recursion is driven by the size of a number can also be used to incrementally generate output lists.

Example 16.3.4

The goal of this example is to define a function, called list-down-to-zero, that satisfies the following contract:

;; LIST-DOWN-TO-ZERO
;; ---
;; INPUT: N, a non-negative integer
;; OUTPUT: A list of the form (N N-1 N-2 ... 2 1 0)

Here are some examples of the desired behavior:

> (list-down-to-zero 5)
(5 4 3 2 1 0)
> (list-down-to-zero 8)
(8 7 6 5 4 3 2 1 0)
Thinking recursively about the first example, we note that the list from 5 down to 0 can be constructed by attaching the number 5 to the front of the list from 4 down to 0. More generally, for any non-negative number n:

\[(\text{list-down-to-zero } n) \Rightarrow (\text{cons } n (\text{list-down-to-zero } (- n 1)))\]

where, for the base case, we stipulate that: $(\text{list-down-to-zero } m) \Rightarrow ()$, for any $m < 0$. (Alternatively, we could use $(\text{list-down-to-0 } 0) \Rightarrow (0)$ as our base case.) Here is the completed solution:

```
(define list-down-to-zero
  (lambda (n)
    (cond
      ;; Base Case: N < 0
      ((< n 0) ()
       )
      ;; Recursive Case: N >= 0
      (else
       (cons n (list-down-to-zero (- n 1)))))))
```

In-Class Problem 16.3.3

Define a function, called `list-up-to-n`, that satisfies the following contract:

```
;; LIST-UP-TO-N
;; ---------------------------------------------
;; INPUTS: FROM, a non-negative integer (starting point)
;; N, a non-negative integer (stopping point)
;; OUTPUT: A list of the form (FROM FROM+1 FROM+2 ... N)
```

Here are some examples of the desired behavior:

```
> (list-up-to-n 4 12)
(4 5 6 7 8 9 10 11 12)
> (list-up-to-n 3 7)
(3 4 5 6 7)
```

Hint: Fill in the blanks: The list of integers from 4 to 12 can be constructed by attaching ____ to the front of the list of integers from ____ to ____. More generally: The list of integers from ____ to ____ can be constructed by attaching ____ to the front of the list of integers from ____ to ____.

In-Class Problem 16.3.4

Define a function, called `random-flips`, that satisfies the following contract:

```
;; RANDOM-FLIPS
;; ---------------------------------------------
;; INPUTS: N, a non-negative integer
;; OUTPUT: A list containing N random flips of a coin, where each flip is either H or T
```

Here are some examples of the desired behavior:
> (random-flips 8)
(H H T H T T H)
> (random-flips 5)
(T H H T H)

Hint: Use the flip-coin function from Example 15.2.2 as a helper. Fill in the blanks: A list of \(n \) random coin flips can be generated by attaching __________________ to the front of a list of ______ random coin flips.

16.4 Tail Recursion, Accumulators, and Wrapper Functions Revisited

Sections 14.2 through 14.4 introduced the concepts of tail recursion, accumulators, and wrapper functions, respectively. As will be seen in this section, these concepts apply equally well to list-based recursion and the incremental generation of lists as output values.

Recall from Defn. 14.2 that a recursive function-call expression is tail recursive if, whenever its evaluation is needed as part of evaluating the parent function’s body, its evaluation is the last step in that process. And a recursive function is tail-recursive if each of its recursive function-call expressions is tail recursive.

Checking the functions implemented in Examples 16.2.1 through 16.3.4 reveals that mult-all, double-all, mappy and list-down-to-zero are not tail recursive, while is-elt-of?, is-elt-of?-alt and print-histy are tail recursive. The following examples define tail-recursive versions of mult-all, list-down-to-zero and double-all, respectively called mult-all-acc, list-down-to-zero-acc and double-all-acc. As the names indicate, each of these tail-recursive functions will take an additional input that serves to accumulate the desired answer. For mult-all-acc, the extra input will incrementally accumulate the product of the numbers in the input list, much as the accumulator in facty-acc (cf. Example 14.3.3) accumulated the factorial of its input. For list-down-to-zero-acc and double-all-acc, the extra input will incrementally accumulate a list: in particular, each tail-recursive function call will include a call to the cons function to attach a new element to the front of some list. As in Section 14.4, for each accumulator-based, tail-recursive function we shall define an accompanying wrapper function that takes care of providing appropriate initial values for any additional inputs.

Example 16.4.1: Tail-recursive function: mult-all-acc

Recall that the mult-all function computes the product of all of the numbers in a given list. The mult-all-acc function will work similarly, except that it will take an extra input, called acc, that will accumulate the desired product. In particular, as we walk through the given list of numbers, as each number is encountered, it will be multiplied into the accumulator. As with facty-acc from Example 14.3.3, the initial value of acc will be 1 (i.e., the multiplicative identity).

It can often help to consider a concrete example. Therefore, suppose that we want to use mult-all-acc to compute the product of the numbers in the list \((3 \ 7 \ 2 \ 4)\). We start with acc equal to 1. Imagine the computation proceeding as follows, where the first input to mult-all-acc is the list of numbers, and the second input is the accumulator:

\[
\begin{align*}
\text{mult-all-acc } '(3 \ 7 \ 2 \ 4) \ 1 & \Rightarrow \text{rec. case: “accumulate” a factor of 3} \\
& \Rightarrow \text{rec. case: “accumulate” a factor of 7} \\
& \Rightarrow \text{rec. case: “accumulate” a factor of 2} \\
& \Rightarrow 168 & \text{base case: accumulator has the answer!}
\end{align*}
\]

Notice that the inputs for each recursive function call are:
• the rest of the current list, and
• the product of the first element of the current list and the current accumulator.

Thus, by the time the base case (i.e., the empty list) is reached, the accumulator has the desired product: $3 \cdot 7 \cdot 2 \cdot 4 = 168$. Here is the completed solution:

```scheme
;; MULT-ALL-ACC
;; -----------------------------------------------
;; INPUTS: LISTY, a list of numbers
;; ACC, a number (accumulator of desired product)
;; OUTPUT: When called with ACC=1, the output is the product
;; of all of the numbers in LISTY. More generally, the output
;; is the product of ACC and all of the numbers of LISTY.

(define mult-all-acc
  (lambda (listy acc)
    (cond
      ;; Base Case: LISTY is empty
      ((null? listy)
       ;; The accumulated product
       acc)
      ;; Recursive Case: LISTY is non-empty
      (else
       ;; Tail-recursive function call on adjusted inputs:
       ;; Note: ACC "accumulates" (first listy)
       (mult-all-acc (rest listy)
                     (* (first listy) acc))))))
```

As is often the case, describing the output for accumulator-based functions can be challenging in the general case (e.g., above, when ACC is something other than 1). Here is the accompanying wrapper function:

```scheme
;; MULT-ALL-WR
;; ----------------------------------------
;; INPUT: LISTY, a list of numbers
;; OUTPUT: The product of the numbers in LISTY

(define mult-all-wr
  (lambda (listy)
    (mult-all-acc listy 1)))
```

Notice that the contract for `mult-all-wr` is the same as that for `mult-all`—except for the name of the function. That is, the two functions are equivalent.

Example 16.4.2: Tail-recursive function: list-down-to-zero-acc

Recall that the list-down-to-zero function takes a non-negative integer n as its only input, and generates as its output a list of the form $(n \ n-1 \ n-2 \ ... \ 2 \ 1 \ 0)$. The list-down-to-zero-acc function will work similarly, except that it will incrementally accumulate the desired list in an extra input, acc. As in the double-all and mappy functions (cf. Examples 16.3.1 and 16.3.2, respectively) the
list-accumulator will start out as the empty list.

Consider the example where the numerical input \(n \) is 3, and we want to generate the list \((3 2 1 0)\). As in list-down-to-zero, the value of \(n \) will decrease by one on each recursive function call, but the accumulator will be adjusted by using the cons function to attach \(n \) to the front of the accumulator, as illustrated in the following sequence of evaluations:

\[
\begin{align*}
\text{(list-down-to-zero-acc 3 ())} \\
& \Rightarrow \text{(list-down-to-zero-acc 2 '(3))} \quad \leftarrow \text{attach 3 to front of acc} \\
& \Rightarrow \text{(list-down-to-zero-acc 1 '(2 3))} \quad \leftarrow \text{attach 2 to front of acc} \\
& \Rightarrow \text{(list-down-to-zero-acc 0 '(1 2 3))} \quad \leftarrow \text{attach 1 to front of acc} \\
& \Rightarrow \text{(list-down-to-zero-acc -1 '(0 1 2 3))} \quad \leftarrow \text{attach 0 to front of acc} \\
& \Rightarrow (0 1 2 3) \quad \leftarrow \text{acc has the answer??!}
\end{align*}
\]

Whoops! While this would be fine for generating a list from 0 to \(n \), that is not what we were aiming for! This example illustrates a common issue that arises when using list accumulators:

* When using an accumulator to incrementally generate a list, the order of the elements in the accumulator ends up being the reverse of the order in which they were attached!

There are two ways to fix this problem: (1) define a function to reverse the elements of a list; or (2) arrange to process the desired elements in the opposite order. Below, we take the second approach. Later on, we’ll define a function for reversing the elements of a list.

For the list-down-to-zero-acc function, we can arrange to visit the numbers in the order from 0 up to \(n \) by including yet another input, called curr (for current number), whose value shall start out at 0 and increment by one on each recursive function call. Since 0 will be the first number to be attached to the accumulator, it will end up being the last number in the generated list, as desired. So the inputs to list-down-to-zero-acc will be \(n, \text{acc} \) and curr. In this version, the value of \(n \) will be the same for each recursive function call. That is, \(n \) serves as an upper bound on the value of curr. When that upper bound is reached, the recursion will terminate, as illustrated below:

\[
\begin{align*}
\text{(list-down-to-zero-acc 3 (0) 0)} \\
& \Rightarrow \text{(list-down-to-zero-acc 3 '(0) 1)} \quad \leftarrow \text{attach 0 to front of acc} \\
& \Rightarrow \text{(list-down-to-zero-acc 3 '(1 0) 2)} \quad \leftarrow \text{attach 1 to front of acc} \\
& \Rightarrow \text{(list-down-to-zero-acc 3 '(2 1 0) 3)} \quad \leftarrow \text{attach 2 to front of acc} \\
& \Rightarrow \text{(list-down-to-zero-acc 3 '(3 2 1 0) 4)} \quad \leftarrow \text{attach 3 to front of acc} \\
& \Rightarrow (3 2 1 0) \quad \leftarrow \text{acc has the answer!}
\end{align*}
\]

Notice that in this version of list-down-to-zero-acc, the base case is signaled by curr being greater than \(n \)—in this example, when 4 > 3. Here is the completed solution:

```scheme
;; LIST-DOWN-TO-ZERO-ACC
;; -----------------------------------------------
;; INPUTS: N, a non-negative integer
;; ACC, a list accumulator
;; CURR, a non-negative integer
;; OUTPUT: When called with ACC=() and CURR=0, the output is the list (N N-1 N-2 ... 2 1 0). More generally,
;; the output is the "concatenation" of the lists (N N-1 N-2 ... CURR) and ACC.
```

```scheme
(list-down-to-zero-acc 3 (0) 0)
⇒ (list-down-to-zero-acc 3 '(0) 1)  \leftarrow attach 0 to front of acc
⇒ (list-down-to-zero-acc 3 '(1 0) 2) \leftarrow attach 1 to front of acc
⇒ (list-down-to-zero-acc 3 '(2 1 0) 3) \leftarrow attach 2 to front of acc
⇒ (list-down-to-zero-acc 3 '(3 2 1 0) 4) \leftarrow attach 3 to front of acc
⇒ (3 2 1 0) \leftarrow acc has the answer!
```
(define list-down-to-zero-acc
 (lambda (n acc curr)
 (cond
 ;; Base Case: CURR > N
 ((> curr n)
 ;; The accumulator has the desired list
 acc)
 ;; Recursive Case: CURR <= N
 (else
 ;; Tail-recursive function call with adjusted inputs:
 (list-down-to-zero-acc n (cons curr acc) (+ curr 1))))))

(You should convince yourself that the “more generally” part of the contract is correct.) Here is the associated wrapper function:

 ;; LIST-DOWN-TO-ZERO-WR
 ;; ---
 ;; INPUT: N, a non-negative integer
 ;; OUTPUT: The list (N N-1 N-2 ... 2 1 0)
 (define list-down-to-zero-wr
 (lambda (n)
 ;; Call the tail-recursive helper with ACC=() and CURR=0:
 (list-down-to-zero-acc n () 0)))

Before introducing the \textit{double-all-acc} function, which also uses a list accumulator and, so, suffers from the same problem seen earlier regarding the order of accumulated elements, we first introduce the \textit{transfer-all} and \textit{reversey} functions. The latter function can be used to reverse the elements in a list.

\textbf{Example 16.4.3: The \textit{transfer-all} and \textit{reversey} functions}

\begin{enumerate}
 \item The goal for this example is to define a function, called \textit{transfer-all}, that satisfies the following contract:

 ;; TRANSFER-ALL
 ;; --
 ;; INPUTS: LISTY, LISTZ, two lists
 ;; OUTPUT: The list obtained by "popping" each element in turn off of the front of LISTY and "pushing" it onto the front of LISTZ.

 \item Here are some examples of the desired behavior:

 \begin{verbatim}
 > (transfer-all '(a b c) '(1 2))
 (c b a 1 2)
 > (transfer-all '(1 2) '(a b c))
 (2 1 a b c)
 \end{verbatim}

 Notice that the elements from the first list appear in the reverse order in the output list. Here is a sample sequence of evaluations corresponding to the first example above:

\end{enumerate}
As the above example illustrates, the first list (i.e., listy) is driving the recursion, and the second list (i.e., listz) is acting like an accumulator. When listy is empty, the accumulator listz contains the desired answer. Here is the completed function definition:

\[
\begin{align*}
(\text{transfer-all} & \ ' \ (a \ b \ c) \ ' \ (1 \ 2)) \\
\Rightarrow \ & (\text{transfer-all} \ ' \ (b \ c) \ ' \ (a \ 1 \ 2)) \quad \leftarrow \text{attach a to front of second list} \\
\Rightarrow \ & (\text{transfer-all} \ ' \ (c) \ ' \ (b \ 1 \ 2)) \quad \leftarrow \text{attach b to front of second list} \\
\Rightarrow \ & (\text{transfer-all} \ () \ ' \ (c \ b \ 1 \ 2)) \quad \leftarrow \text{attach c to front of second list} \\
\Rightarrow \ & (c \ b \ a \ 1 \ 2) \quad \leftarrow \text{base case!}
\end{align*}
\]

Next, we define a “wrapper” for transfer-all which we shall call reversey, for reasons that will soon become apparent.

\[
\begin{align*}
(\text{define} & \ \text{reversey} \\
(\lambda & \ (\text{listy})) \\
(\text{transfer-all} & \ \text{listy} \ \text{listz})))
\end{align*}
\]

Here are some examples that illustrate that reversey does indeed generate the reversal of its input:

\[
\begin{align*}
> \ & (\text{reversey} \ ' \ (a \ b \ c \ d)) \\
\ & (d \ c \ b \ a) \\
> \ & (\text{reversey} \ ' \ (1 \ 2 \ 3 \ 4 \ 5 \ 6)) \\
\ & (6 \ 5 \ 4 \ 3 \ 2 \ 1)
\end{align*}
\]

Incidentally, now that you know how to implement the reversey function, I can tell you that there is a built-in function called reverse that does the same thing!
Example 16.4.4: Not all ways of reversing a list are equal!

This example considers an alternative approach to reversing a list, one based on repeated concatenation. Although this approach leads to a function that correctly reverses a list, it turns out to be very inefficient. First, since it is not tail recursive, it can use an awful lot of the computer’s memory when reversing long lists. Second, by repeatedly concatenating long lists, it takes a lot longer to reverse a list than the `reversey` function seen earlier. To illustrate the inefficiency of this approach, both functions, `konk` and `bad-reverse`, defined below, print out some information each time they are called. The `konk` function concatenates two lists; `bad-reverse` uses `konk` as a helper function.

;; KONK
;; ---
;; INPUTS: LISTY, LISTZ, two lists
;; OUTPUT: A list containing all of the elements of LISTY,
;; followed by all of the elements of LISTZ.
(define konk
 (lambda (listy listz)
 (printf "KONK: LISTY: " listy listz)
 (cond
 ;; Base Case: LISTY is empty
 ((null? listy)
 (listz))
 ;; Recursive Case: LISTY is non-empty
 (else
 ;; Attach (FIRST LISTY) onto the concatenation
 ;; of (REST LISTY) and LISTZ
 (cons (first listy)
 (konk (rest listy) listz))))))

;; BAD-REVERSE
;; --
;; INPUT: LISTY, any list
;; OUTPUT: A list containing the same elements as
;; LISTY, but in the opposite order.
(define bad-reverse
 (lambda (listy)
 (printf "BAD-REVERSE: LISTY: " listy)
 (cond
 ;; Base Case: LISTY is empty
 ((null? listy)
 ()))
 ;; Recursive Case: LISTY is non-empty
 (else
 ;; Recursive function call reverses the REST of LISTY.
 ;; So, we need to attach (first listy) at the end.
 ;; Unfortunately this involves walking through the
 ;; potentially long list returned by the recursive
 ;; function call.
 (konk (bad-reverse (rest listy))
 (cons (first listy) ()))))
To get an idea of how inefficient bad-reverse is, try evaluating the following expression in the Interactions Window: (bad-reverse '(a b c d e)).

Example 16.4.5: The double-all-acc function

The goal of this example is to define a tail-recursive function that doubles all of the elements of a given list of numbers. Because we shall use a list accumulator, the doubled numbers in the accumulated list will come out in the wrong order. But we shall just use the built-in reverse function to reverse the order of the accumulated list before returning it as the output. Here is the completed function definition:

```
;; DOUBLE-ALL-ACC
;; -----------
;; INPUTS: LISTY, a list of numbers
;; ACC, a list accumulator
;; OUTPUT: When called with ACC=(), the output is
;; a list just like LISTY, except that each
;; element has been doubled.
(define double-all-acc
  (lambda (listy acc)
    (cond
      ;; Base Case: LISTY is empty
      ((null? listy)
        ;; REVERSE the accumulator!
        (reverse acc))
      ;; Recursive Case: LISTY is non-empty
      (else
        ;; Tail-recursive function call with adjusted inputs
        (double-all-acc (rest listy)
          ;; "Accumulate" the first element doubled
          (cons (* 2 (first listy))
            acc))))))
```

As this example illustrates, the previously identified issue with list accumulators (i.e., that the accumulated elements come out in the opposite order) is easily resolved using the reverse function at the very last instant!

16.5 Sorting Algorithms

This section introduces two algorithms for sorting a list of numbers: the insertion-sort algorithm, and the merge-sort algorithm. After defining Scheme functions that implement these algorithms, they are compared by running them on long lists of randomly generated numbers. In what follows, we shall assume that the goal is to sort lists of numbers into non-decreasing order, as illustrated below:

Before sorting: (3 2 1 4 3 2 3 3 6 1 0 5)
After sorting: (0 1 1 2 2 3 3 3 4 5 6)

Notice that for any consecutive elements, x and y, in the sorted list, the following holds: x ≤ y.
The Insertion-Sort Algorithm

The insertion-sort algorithm uses a helper function, called insert, that inserts a number into an already-sorted list, such that the resulting list is still sorted. Here is its contract, followed by some examples of the desired behavior:

```scheme
;; INSERT
;; -----------------------------------------------
;; INPUTS: NUM, a number
;; SORTED, a list of numbers that are already sorted
;; into non-decreasing order
;; OUTPUT: The list obtained by inserting NUM into SORTED while
;; preserving the non-decreasing ordering

> (insert 3 '(5 8 9 10 11))  ; 3 goes at the front of the sorted list
  (3 5 8 9 10 11)
> (insert 3 '(0 1 1 2))      ; 3 goes at the end of the sorted list
  (0 1 1 2 3)
> (insert 3 '(1 2 4 5 6))    ; 3 goes somewhere in the middle
  (1 2 3 4 5 6)
> (insert 3 '(1 2 2 3 4 4 4 9 12))  ; Same as above, except that there's another 3
  (1 2 2 3 3 4 4 4 9 12)
```

Intuitively, the insert function walks through the already-sorted list until it finds the proper place for the given number. (What distinguishes the “proper place” for the given number?) We’ll have more to say about how the insert function might do this—in fact, we’ll define the insert function from scratch—but, for now, we’ll just take the insert function as given.

As indicated earlier, the insertion-sort algorithm takes a (usually unsorted) list of numbers as its only input. Its goal is to generate as its output a list containing the same elements, but sorted into non-decreasing order. Here is its contract:

```scheme
;; INSERTION-SORT
;; -----------------------------------------------
;; INPUTS: LISTY, a list of numbers
;; OUTPUT: A list containing the same elements as LISTY,
;; but sorted into non-decreasing order
```

It can be implemented using list-based recursion, as follows. First, as a base case, consider that the empty list is already sorted.¹ Next, for the recursive case (i.e., when its input is a non-empty list), the insertion-sort algorithm applies the following recursive rule:

```
(insertion-sort listy) => (insert (first listy)
  (insertion-sort (rest listy)))
```

According to its contract, the recursive call on the rest of listy should generate a sorted list containing all of the elements of (rest listy).² Therefore, to generate the desired output (i.e., a sorted list that contains all of the elements of listy), it only remains to find out where (first listy) should be inserted into that sorted rest of listy. And that is precisely what the call to the insert helper function does. Here is the completed definition of the insertion-sort function:

¹A one-element list is also already sorted, but we stick with the empty list as the base case to simplify the code slightly.
²In general, when defining recursive functions, we assume that the recursive function call will generate the right answer. After all, it will be evaluated using the same function that we are currently defining! This sort of assumption—which, at first, may seem crazy—is justified by mathematical induction.
(define insertion-sort
 (lambda (listy)
 (cond
 ;; Base Case: LISTY is empty
 ;; The empty list is already sorted
 ((null? listy) ()
 ;; Recursive Case: LISTY is non-empty
 (else
 (insert (first listy)
 (insertion-sort (rest listy))))))))

Example 16.5.1: Applying insertion-sort to a sample list

Suppose that listy is the list (3 2 5 1 6). Then the recursive function call on the rest of listy would be, in effect,

```
(insertion-sort '(2 5 1 6))
```

Assuming that the recursive function call does the right thing, it should generate as its output the sorted list (1 2 5 6). Therefore, in this case, the above-mentioned recursive rule would, in effect, lead to the following sequence:

```
(insertion-sort '(3 2 5 1 6))
⇒ (insert 3 (insertion-sort '(2 5 1 6)))
⇒ (insert 3 '(1 2 5 6))
⇒ '(1 2 3 5 6)
```

And if we were to consider the details of each recursive function call, we would, in effect, end up with the following sequence of evaluations, using the abbreviations, i for insert, and isort for insertion-sort:

```
(isort '(3 2 5 1 6))
⇒ (i 3 (isort '(2 5 1 6)))
⇒ (i 3 (i 2 (isort '(5 1 6))))
⇒ (i 3 (i 2 (i 5 (isort '(1 6))))))
⇒ (i 3 (i 2 (i 5 (1 1 (i 6 (isort ()))))))
⇒ (i 3 (i 2 (i 5 (1 1 (1 6 ()))))))
⇒ (i 3 (i 2 (i 5 (i 1 '(6))))))
⇒ (i 3 (i 2 (i 5 '(1 6))))
⇒ (i 3 (i 2 '(1 5 6)))
⇒ (i 3 '(1 2 5 6))
⇒ '(1 2 3 5 6)
```

In-Class Problem 16.5.1: The insert helper function

Define the insert function to satisfy the contract given earlier.

Hints: Use recursion to walk through sorted until you find the proper place for num. How will you recognize the proper place for num? Consider (first listy) and num. Finally, what should you do if sorted is empty?
In-Class Problem 16.5.2: Generating long lists of random numbers

Define a function, called list-of-n-random-numbers, that satisfies the following contract:

;; LIST-OF-N-RANDOM NUMBERS
;; --
;; INPUT: N, a positive integer
;; OUTPUT: A list containing N numbers, each randomly generated
;; from the set {0, 1, 2, ..., 99999}

Here are some examples of the desired behavior:

> (list-of-n-random-numbers 10)
(18980 44224 94176 57470 23568 47609 70753 77870 98756 11729)

> (list-of-n-random-numbers 5)
(68856 3578 85898 27820 87029)

Hint: In the recursive case, use the built-in random function with an appropriate input.

This function can be used to randomly generate lists of numbers for insertion-sort to sort, as illustrated below:

> (let* ((list-o-randies (list-of-n-random-numbers 5))
 (sorted (insertion-sort list-o-randies)))
 (printf "BEFORE: ~A~%" list-o-randies)
 (printf "AFTER: ~A~%" sorted)
 sorted)
BEFORE: (68502 79284 50452 31764 48239)
AFTER: (31764 48239 50452 68502 79284)

> (let* ((list-o-randies (list-of-n-random-numbers 5))
 (sorted (insertion-sort list-o-randies)))
 (printf "BEFORE: ~A~%" list-o-randies)
 (printf "AFTER: ~A~%" sorted)
 sorted)
BEFORE: (51897 96352 87874 82047 17760)
AFTER: (17760 51897 82047 87874 96352)

Of course, it will be more interesting to see how long it takes insertion-sort to sort really long lists of numbers (e.g., lists having thousands of elements). In such cases, you wouldn’t want to print out the before and after lists!

To avoid excessive memory usage, it is better to implement accumulator-based tail-recursive versions of the insert and insertion-sort functions.

In-Class Problem 16.5.3: Accumulator-based tail-recursive version of the insert function

For this problem, the goal is to define an accumulator-based tail-recursive version of the insert function, called insert-acc. Recall that the insert function aims to insert a given number num into its proper place in an already-sorted list, sorted. The main idea behind the accumulator-based tail-recursive approach is to walk through sorted, accumulating all of its elements that are smaller than num, as
illustrated below:

```
(insert-acc num sorted acc )
(insert-acc 5 ’(1 2 4 6 12 15) () )
(insert-acc 5 ’(2 4 6 12 15) ’(1) )
(insert-acc 5 ’(4 6 12 15) ’(2 1) )
(insert-acc 5 ’(6 12 15) ’(4 2 1) )
```

Notice that when all of the numbers smaller than `num` have been accumulated, the proper place for `num` has been found (i.e., the base case has been reached). The only thing that remains is to assemble the pieces into the final sorted list. In the above example, the desired list is `(1 2 4 5 6 12 15)`, which can be built as follows:

1. Use `cons` to attach `num` to the front of `sorted`, yielding `(5 6 12 15)`.
2. Use `transfer-all` (from Example 16.4.3) to transfer all of the elements of `acc` onto the result of Step 1, yielding `(1 2 4 5 6 12 15)`.

Using the approach outlined above, define the `insert-acc` to satisfy the following contract:

```
;; INSERT-ACC
;; -----------------------------------------------------------
;; INPUT: NUM, a number
;; SORTED, a list of numbers that are already sorted
;; into non-decreasing order
;; ACC, a list of numbers in non-increasing order,
;; where each number in ACC is less than NUM
;; OUTPUT: When called with ACC = (), the output is a list
;; containing NUM and all the numbers in SORTED,
;; all sorted into non-decreasing order.
```

Here are some examples of its use:

```
> (insert-acc 5 ’(1 2 4 6 12 15) () )
(1 2 4 5 6 12 15)
> (insert-acc 3 ’(1 1 2 2 3 3 4 4 5 5) () )
(1 1 2 2 3 3 3 4 4 5 5)
```

Finally, define a wrapper function, called `insert-wr`, that satisfies the following contract, and exhibits the behavior shown below:

```
;; INSERT-WR -- wrapper function for INSERT-ACC
;; --------------------------------------------------------------
;; INPUT: NUM, a number
;; SORTED, a list of numbers that are already sorted
;; into non-decreasing order
;; OUTPUT: A list containing NUM and all the numbers in SORTED,
;; all sorted into non-decreasing order.
```

```
> (insert-wr 5 ’(1 2 4 6 12 15))
(1 2 4 5 6 12 15)
> (insert-wr 3 ’(1 1 2 2 3 3 4 4 5 5))
(1 1 2 2 3 3 3 4 4 5 5)
```
In-Class Problem 16.5.4: Tail-recursive version of insertion-sort

For this problem, we seek a tail-recursive version of the insertion-sort algorithm. For convenience, we call it isort-acc. The following sequence of recursive function calls illustrates the approach, which uses an extra accumulator argument to accumulate the sorted list. At each step the first element of the unsorted list is inserted into its proper place in the sorted list:

\[
\begin{align*}
\Rightarrow & \quad (\text{isort-acc} (4\ 9\ 2\ 6) ()) & \quad \leftarrow \text{recursive case} \\
\Rightarrow & \quad (\text{isort-acc} (9\ 2\ 6) (\text{insert-wr} 4 ()) & \quad \leftarrow \text{recursive case} \\
\Rightarrow & \quad (\text{isort-acc} (9\ 2\ 6) '()4)) & \quad \leftarrow \text{recursive case} \\
\Rightarrow & \quad (\text{isort-acc} (2\ 6) (\text{insert-wr} 9 '()4)) & \quad \leftarrow \text{recursive case} \\
\Rightarrow & \quad (\text{isort-acc} (2\ 6) '(4\ 9)) & \quad \leftarrow \text{recursive case} \\
\Rightarrow & \quad (\text{isort-acc} (6) (\text{insert-wr} 2 '(4\ 9)) & \quad \leftarrow \text{recursive case} \\
\Rightarrow & \quad (\text{isort-acc} (6) '(2\ 4\ 9)) & \quad \leftarrow \text{recursive case} \\
\Rightarrow & \quad (\text{isort-acc} () (\text{insert-wr} 6 '(2\ 4\ 9)) & \quad \leftarrow \text{base case} \\
\Rightarrow & \quad (\text{isort-acc} () '(2\ 4\ 6\ 9)) & \\
\Rightarrow & \quad (2\ 4\ 6\ 9) \\
\end{align*}
\]

Once your isort-acc function is working properly, define a wrapper function called isort-wr that calls isort-acc with an appropriate value for the accumulator.

16.5.2 The Merge-Sort Algorithm

The merge-sort algorithm, like the insertion-sort algorithm, takes a (typically unsorted) list of numbers as its input, and generates a sorted version of that list as its output. Here is its contract:

\[
\begin{align*}
\text{;; MERGE-SORT} \\
\text{;; ------------------------------} \\
\text{;; INPUTS: LISTY, a list of numbers} \\
\text{;; OUTPUT: A list containing the same elements as LISTY,} \\
\text{;; but sorted into non-decreasing order} \\
\end{align*}
\]

However, the merge-sort algorithm takes a very different approach to sorting lists, as follows. First, its base case handles the case where listy is a one-element list which, of course, must already be sorted. Second, when listy is non-empty, it uses recursion, as follows:

(1) Split listy into two lists, lefty and righty, of roughly the same size;

(2) Use the merge-sort function to sort lefty, yielding a sorted list, sorted-lefty; and use merge-sort to sort righty, yielding a sorted list, sorted-righty; and then

(3) Merge the two sorted lists, sorted-lefty and sorted-righty, into a single sorted list, which will be the desired output.

As indicated above, the merge-sort function uses two helper functions: split and merge. These helpers will be defined shortly. For now, we will assume that they are available, and that they satisfy the following contracts:

\[
\begin{align*}
\text{;; SPLIT} \\
\text{;; ------------------------------} \\
\text{;; INPUT: LISTY, any list} \\
\text{;; OUTPUT: A list of the form (LEFTY RIGHTY) where LEFTY} \\
\text{;; and RIGHTY are two subsidiary lists such that the} \\
\text{;; elements of LISTY have been allocated as evenly as} \\
\text{;; possible to LEFTY and RIGHTY, but with no regard to} \\
\text{;; their order.} \\
\end{align*}
\]

Example 16.5.2: The split and merge helper functions

Here are some examples of the behavior of the split and merge helper functions:

```scheme
> (split '(5 3 1 2 8 4 9 4))  \→ Input has an even number of elements
((4 4 2 3) (9 8 1 5))
> (split '(5 3 1 2 7))  \→ Input has an odd number of elements
((7 1 5) (2 3))
> (merge '(1 3 5 7) '(2 4 6 8))
(1 2 3 4 5 6 7 8)
> (merge '(1 1 2 3 3 3 5 9) '(2 3 3 4 8 8 9))
(1 1 2 2 3 3 3 3 3 3 4 5 8 8 9 9)
```

In the case of the split function, notice that the order of the elements in the input list and the two subsidiary lists in the output do not matter at all. The reason is that split will typically be applied to unsorted lists—so the order of the elements doesn’t matter. Also, if the input list has an even number of elements, then the two lists in the output will have the same number of elements; otherwise, one of the output lists will have the odd element. For the merge function, the two input lists must already be sorted, but they may have duplicate elements, and the two input lists need not have the same number of elements.

Example 16.5.3: Applying merge-sort to a sample list

Here, we consider the application of the merge-sort function to the input list (8 2 5 9 3 4 6 1). As described previously, there are three steps to the recursive case:

1. Split listy into two lists, lefty and righty, of roughly the same size. Here:
 lefty = (6 3 5 8)
 righty = (1 4 9 2)

2. Use the merge-sort function to sort lefty, yielding a sorted list, sorted-lefty; and use merge-sort to sort righty, yielding a sorted list, sorted-righty. Here:
 sorted-lefty = (3 5 6 8)
 sorted-righty = (1 2 4 9)

3. Merge the two sorted lists, sorted-lefty and sorted-righty, into a single sorted list, which will be the desired output. Here:
 (merge '(3 5 6 8) '(1 2 4 9)) ⇒ (1 2 3 4 5 6 8 9).

Here is the completed definition of the merge-sort function:

```scheme
(define merge-sort
  (lambda (listy)
    (cond
```
Notice that most of the work is done in the variable-declaration part of the let* special form. The body of the let* just applies the merge function to the two sorted lists.

Now it is time to define the split and merge helper functions needed by merge-sort.

In-Class Problem 16.5.5: The `split` helper function

Define the `split` helper function to satisfy the contract seen earlier. Here are some hints:

1. Define an accumulator-based helper function, called `split-acc`, that includes two extra inputs, `lefty` and `righty`. These will serve as accumulators for the two subsidiary lists.
2. In the base case, use the `list-two` function defined in In-Class Problem 16.1.2 to create the desired list of lists. (Alternatively, use the built-in `list` function; or use a couple of calls to the `cons` function.)
3. Define `split` as a wrapper function that simply calls `split-acc` with appropriate initial values for its accumulator inputs.

In-Class Problem 16.5.6: The `merge` helper function

Define the `merge` helper function to satisfy the contract seen earlier. Here are some hints:

1. When either list is empty, the answer is easy.
2. When both lists are non-empty, compare their first elements to see which one comes first.

Define two versions of the `merge` function: one that is not tail recursive (and perhaps easier to define), and one that is just a wrapper for a tail-recursive helper function called `merge-acc`. The contract for `merge-acc` is given below:

```
;; MERGE-ACC
;; -----------------------------------------------
;; INPUTS:  SORTED-LEFTY, SORTED-RIGHTY, two lists of
;;   numbers, each sorted into non-decreasing order
;;   ACC, a list-accumulator
;; OUTPUT:  When called with ACC=(), the output is a
;;   single list containing all of the elements
;;   of SORTED-LEFTY and SORTED-RIGHTY, sorted
```
16.5.3 Comparing the Performance of Insertion Sort and Merge Sort

This section shows how we can write Scheme functions to automate a rigorous comparison of the insertion-sort and merge-sort algorithms. Some considerations include:

- We want to test these algorithms on really long lists of randomly generated numbers.
- For each randomly generated list, we want to test both algorithms on the same list.
- We’d like to know how long it takes each algorithm to sort the lists.

We already have the list-of-n-random-numbers function, from In-Class Problem 16.5.2. And since the two sorting algorithms are non-destructive, we can simply store the randomly generated list of numbers in a local variable, and then apply each sorting algorithm to the same list. As for timing their performance, Scheme provides a special form, called time, described below.

The time special form. The purpose of the time special form is to report how long it takes to evaluate a given expression. The syntax and semantics of the time special form are simple.

- **(Syntax)** Any expression of the form (time expr) is a legal instance of the time special form.
- **(Semantics – Output Value)** Any expression of the form (time expr) evaluates to whatever expr evaluates to.
- **(Semantics – Side Effect)** The evaluation of an expression of the form (time expr) causes three pieces of timing information to be displayed in the Interactions Window:

 - **cpu time** how many milliseconds DrScheme spent evaluating expr. (CPU is an acronym for the computer’s central processing unit.)
 - **real time** how many milliseconds elapsed while expr was evaluated.
 - **gc time** how many milliseconds were spent in a memory-management process called garbage collection. (Garbage collection is an extremely interesting and important concept in the management of a computer’s memory, but a discussion of it is beyond the scope of this book.)

The cpu time is typically a bit less than the real time because a computer’s CPU typically does more than one thing during any given time interval; thus, the time the CPU devotes to DrScheme’s evaluation of expr will typically be less than the elapsed time. For our purposes, the cpu time is the most relevant, because it most accurately reflects how much time DrScheme spent evaluating the given expression.

Example 16.5.4: Using the time special form

Here are some examples of the time special form in action:

```
> (time (list-of-n-random-numbers 10000))
cpu time: 4 real time: 5 gc time: 0
(19207 53390 65067 65764 68321 75622 81451 38038 86109 ...)
> (time (insertion-sort (list-of-n-random-numbers 10000)))
cpu time: 7643 real time: 7849 gc time: 62
```
(10 12 26 30 50 65 70 77 80 83 94 104 108 113 114 150 ...) > (let (((listy (list-of-n-random-numbers 10000)))
 (time (insertion-sort listy)))
 cpu time: 7519 real time: 7674 gc time: 61
(2 9 14 16 26 31 32 37 38 40 84 85 113 114 115 119 171 ...)

The first example shows that it doesn’t take DrScheme long to generate a list of 10,000 random numbers. The second example shows how long it takes to generate and sort a list of numbers, using the insertion-sort function. The last example is the most important: it shows how long the sorting process takes; it ignores the time needed to generate the original list of random numbers.

To increase readability, the output lists have been cut off.

Example 16.5.5: Comparing the performance of the sorting algorithms

The following function can be used to compare the performance of the insertion-sort and merge-sort algorithms.

;; COMPARE-SORTING-ALGS
;; ---
;; INPUT: N, a positive integer
;; OUTPUT: None
;; SIDE EFFECT: Reports how long it took for the
;; insertion-sort and merge-sort algorithms to sort
;; the *same* randomly generated list of N numbers.

(define compare-sorting-algs
 (lambda (n)
 (let ((listy (list-of-n-random-numbers n)))
 (printf "Running insertion-sort ...\n")
 (time (insertion-sort listy))
 (printf "Running merge-sort ...\n")
 (time (merge-sort listy))
 (void))))

Here is an example:

> (compare-sorting-algs 1000)
Running insertion-sort ...
 cpu time: 87 real time: 93 gc time: 0
Running merge-sort ...
 cpu time: 6 real time: 6 gc time: 0

In-Class Problem 16.5.7: A thorough comparison of merge-sort and insertion-sort

Use the compare-sorting-algs function to compare the performance of the two sorting algorithms on lists of the following lengths: 1000, 2000, 4000, 8000, 16000, etc. Which algorithm would you recom-
mend? Try running the faster of the two algorithms on really long lists (e.g., with 100,000 elements, or even a million elements).

Example 16.5.6: The built-in sort function

Scheme provides a built-in function, called sort, whose contract is given below, followed by some examples of its use.

;;; SORT -- built-in function
;;; ---
;;; INPUTS: LISTY, a list of stuff
;;; COMPARER, a predicate that can be applied to
;;; any pair of elements in LISTY
;;; OUTPUT: A list containing the same elements as LISTY,
;;; but sorted such that for any elements AAA and BBB
;;; in LISTY, if (COMPARER AAA BBB) ==> #t, then AAA
;;; comes before BBB in the output list.

> (sort '(5 2 1 3 3 2 5) <) ← sort into non-decreasing order
(1 2 3 3 5 5)
> (sort '(5 2 1 3 3 2 5) >) ← sort into non-increasing order
(5 5 3 3 2 2 1)
> (sort '(1 3 5 -2 -4 -6)
 (lambda (x y) (> (* x x) (* y y))))
(-6 5 -4 3 -2 1)

In the last case, the COMPARER predicate is specified by a lambda special form. The sorting function uses this predicate to sort the numbers such that their squares are non-increasing.

16.6 The Underlying Structure of Non-Empty Lists

Up to this point, we have seen that non-empty lists can often be effectively processed recursively using only the first and rest accessor functions. The reason for this is that the underlying structure of non-empty lists in Scheme is, in fact, based on decomposing them into their first and rest parts. The rest of this section explores that structure, revealing the central role of a data structure called a cons cell—also known as a pair.

16.6.1 Data Structures

In Computer Science, the term, data structure, refers to any organized (or structured) collection of data. Typically, each data structure has one or more slots for holding data. In some data structures, the slots for holding data are indexed so that any particular slot can be accessed by its corresponding (numerical) index. For example, the slots in vectors—to be discussed in Chapter 18—are indexed in this way. In other data structures, the slots for holding data are named so that any particular slot can be accessed by its name. Named slots are often called fields. For example, a bank-account data structure might have fields called password and balance. The rest of this section restricts attention to a very simple field-based data structure that, for historical reasons, is called a cons cell. Each cons cell has only two fields. For this reason, cons cells are also called pairs. General field-based data structures will be addressed thoroughly in Chapter 19.

16.6.2 Cons Cells (a.k.a. Pairs)

A cons cell is a field-based data structure structure that has only two fields: one named first, and one named rest. (Yes, that’s right! Stay tuned for the relationship between cons cells and non-empty lists.) Scheme provides the
following built-in functions for computing with cons cells, one of which we have already seen:

```scheme
cons  For constructing a new cons cell
cons? Type-checker predicate for cons cells
```

Example 16.6.1: The cons function revisited

Here is a more accurate contract for the `cons` function. Notice that the second input need not be a list.

```scheme
;; CONS -- built-in function
;; -------------
;; INPUTS: FST, RST, any Scheme data
;; OUTPUT: A cons cell whose FIRST field contains FST, and whose REST field contains RST.
```

The following Interactions Window session demonstrates that the output generated by the `cons` function is indeed a cons cell, as confirmed by the built-in `cons?` type-checker predicate:

```scheme
> (cons 1 2)
(1 . 2)
> (cons? (cons 1 2))
default
> (cons 'x "1232")
(x . "1232")
> (cons? (cons 'x "1232"))
default
> (cons #t 'abc)
(#t . abc)
> (cons? (cons #t 'abc))
default
```

Notice that if the output value is a cons cell, DrScheme displays the result using the dotted-pair notation. For example, a `cons` cell whose first field contains 1 and whose rest field contains 2 is displayed as `(1 . 2)` by DrScheme.

* DrScheme uses the dotted-pair notation when the rest field of a cons cell is something other than a list.

* The dotted-pair notation is not legal Scheme syntax; so we cannot use it in our Scheme programs or in the Interactions Window.

It must be stressed that:

* Although the dotted-pair notation shown above utilizes parentheses, it does not represent a list!

However:

* When the rest field of a cons cell contains a list, then that cons cell is a non-empty list!

In such cases, the Scheme datum is both a cons cell and a non-empty list. This does not contradict the statement made long ago—in Chapter 2—that a datum can only belong to one data type because:

* The set of non-empty lists is an example of a compound data type. Each non-empty list is, in fact, a cons cell that has special contents, in particular, one whose rest field contains a list.
Figure 16.1: The non-empty list, (3 4 6), as a single cons cell—with very particular contents

Example 16.6.2: Cons cells vs. non-empty lists

The following interactions demonstrate that a non-empty list is a cons cell whose rest field contains a list, whereas a cons cell whose rest field contains some other kind of data is not a list.

```
> (cons? '(2 3 4))
#t
> (list? (rest '(2 3 4)))
#t
> (cons? (rest '(2 3 4)))
#t
> (cons 1 2)
(1 . 2)
> (list? (cons 1 2)) ← A dotted pair is not a list
#f
```

Furthermore, as seen previously, when the rest field of a cons cell contains a list, DrScheme displays that cons cell using the familiar list notation:

```
> (cons 1 '(2 3 4))
(1 2 3 4)
> (cons 'x '(y z))
(x y z)
> (cons 1 ())
(1)
```

Fig. 16.1 shows one way of depicting the non-empty list, (3 4 6)—namely, as a single cons cell having very particular contents. In this case, the list is indeed represented as a single cons cell—the biggest one in the picture. The first field in this cons cell contains the datum 3; the rest field of this cons cell contains another cons cell—one that represents the rest of the list (i.e., (4 6)). The first field of that cons cell contains the datum 4; the rest field contains ... yet another cons cell! The first field of the innermost cons cell contains the datum 6; the rest field contains the empty list, which signals that we have reached the end of the list (3 4 6). Notice that the list represented by these three nested cons cells has three elements: 3, 4 and 6. Notice further that the first field of each cons cell contains one of the elements of the list.

* In general, if a list contains n elements, it can be represented by a nested structure of n cons cells.

Example 16.6.3: The structure of non-empty lists

The following interactions demonstrate that a list containing n elements can be represented by a nested structure of n cons cells.
Figure 16.2: An alternative depiction of the non-empty list, (3 4 6), as a chain of cons cells

> (cons 3 (cons 4 (cons 6 ())))
(3 4 6)
> (cons 1 (cons 2 (cons 3 (cons 4 ()))))
(1 2 3 4)
> (cons ’x (cons ’y (cons ’z ())))
(x y z)

Although Fig. 16.1 provides an accurate depiction of the nested structure of cons cells that can be used to represent a non-empty list, this kind of picture would get awfully difficult to draw for lists containing more than, say, five or ten elements. For this reason, we prefer to depict non-empty lists as chains of cons cells, using arrows, as illustrated in Fig. 16.2. It is important to realize that the non-empty list depicted by this figure is the same list as that depicted in Fig. 16.1 (i.e., we have two kinds of picture-syntax for one semantic list!). Instead of showing the rest of the list as a cons cell nested inside the rest field, this depiction uses an arrow from the rest field of one cons cell to the next cons cell in the chain. Similarly, the rest field of the second cons cell points to the third cons cell in the chain. Finally, the rest field of the last cons cell, which contains the empty list, is often depicted as a box with an X in it, signalling the end of the chain.

So... is a non-empty list a single cons cell? Or is it a chain of cons cells? The answer is: it depends on how you look at it! For example, according to the cons? type-checker predicate, a non-empty list is most definitely a single cons cell:

> (cons? '(2 3 4))
#t

On the other hand, if the rest field of a given cons cell \(C_1 \) contains a nested cons cell \(C_2 \), then the thing that actually gets written into the rest field of \(C_1 \) in the computer’s memory is undoubtedly the address of \(C_2 \) (i.e., the location in the computer’s memory where \(C_2 \) can be found). In other words, the rest field of \(C_1 \) contains a pointer to \(C_2 \)—which can be represented by an arrow, as in Fig. 16.2! In short, you can look at it both ways. For our purposes, thinking of non-empty lists as chains of cons cells will be most convenient.

In-Class Problem 16.6.1: Defining our own type-checker predicate for lists

Define a predicate that satisfies the following contract:

```plaintext
;; WELL-FORMED-LIST?
;; ------------------------------
;; INPUT:  DATUM, anything
;; OUTPUT: #t if DATUM is an empty or non-empty list.
;;         If non-empty, DATUM should be a chain of cons
;;         cells, each of whose *rest* slot is filled by
;;         a well-formed list.
```
Here are some examples of its use:

```scheme
> (well-formed-list? ())
#t
> (well-formed-list? '(a b c d))
#t
> (well-formed-list? (cons 1 (cons 2 3)))
#f
> (well-formed-list? 'xyz)
#f
```

Since this function is a predicate, you should be able to define it using `and`, `or`, `and`, and `not`, without using `if` or `cond`.

* Now that we have explored the underlying structure of non-empty lists in terms of cons cells, you should review all of the examples from earlier in this chapter to make sure that you understand the underlying structures of the lists involved.

Example 16.6.4: The double-all function revisited

Recall the definition of the double-all function seen in Example 16.3.1 which takes a list of numbers as its input, and generates a list of the same length whose elements are obtained by doubling the corresponding elements from the input list.

```scheme
(define double-all
  (lambda (listy)
    (cond
      ;; Base Case: LISTY is empty
      ((null? listy)
        ()))
      ;; Recursive Case: LISTY is non-empty
      (else
        ;; Double the first element and attach it to the
double-all of the rest of the list
        (cons (* 2 (first listy))
          (double-all (rest listy)))))))
```

Here’s an example of its behavior:

```scheme
> (double-all '(3 1 4 7))
(6 2 8 14)
```

In general, the double-all function returns a list containing the same number of elements as its input. Equivalently, we may say that the double-all function is length preserving. This can be formally proved using the technique of mathematical induction; however, we shall content ourselves with a less formal analysis.

First, note that for any datum `d` and any list `l`, the list `(cons d l)` has one more element than `l`. Thus, for example, the list `(3 1 4 7)`, which is equivalent to `(cons 3 '(1 4 7))`, has one more element than `(1 4 7)`. But now consider `(double-all '(3 1 4 7))`. By the recursive case, `(double-all '(3 1 4 7))` effectively evaluates to `(cons 6 (double-all '(1 4 7)))`, which has one more element than `(double-all '(1 4 7))`. Therefore, if we want to show that `(double-all '(3 1 4 7))` and `(3 1 4 7)` have the same number of elements, we need only
show that \((\text{cons } 6 \ (\text{double-all } '(1 \ 4 \ 7)))\) and \((\text{cons } 3 \ '(1 \ 4 \ 7))\) have the same number of elements, which is equivalent to showing that \((\text{double-all } '(1 \ 4 \ 7)))\) and \((1 \ 4 \ 7)\) have the same number of elements. But then, by a similar line of reasoning, this will hold if and only if \((\text{double-all } '(4 \ 7)))\) and \((4 \ 7)\) have the same number of elements. And that will hold if and only if \((\text{double-all } '(7)))\) and \((7)\) have the same number of elements. And that will hold if and only if \((\text{double-all } ())\) and \(()\) have the same number of elements. And that holds—since \((\text{double-all } ())\) evaluates to \(()\)!

The technique described in the preceding example can be used to show that the built-in map function is also length preserving. For example, \((1 \ 2 \ 3 \ 4)\) and the list generated by evaluating \((\text{map facty } '(1 \ 2 \ 3 \ 4))\) must have the same length.

In-Class Problem 16.6.2: Picturing the length preserving nature of double-all and map

Draw the chain of cons cells corresponding to the list \((3 \ 1 \ 4 \ 7)\). Draw a circle around the portion of that chain that corresponds to the rest of the list. Then draw the chain of cons cells corresponding to the list \((6 \ 2 \ 8 \ 14)\) generated by evaluating \((\text{double-all } '(3 \ 1 \ 4 \ 7))\). Draw a circle around the portion of the chain corresponding to the rest of that list. Notice that the first cons cell in \((3 \ 1 \ 4 \ 7)\) is matched by the first cons cell in \((6 \ 2 \ 8 \ 14)\); and that the rest of the cons cells in \((3 \ 1 \ 4 \ 7)\) are matched by the rest of the output list \((6 \ 2 \ 8 \ 14)\) generated by the recursive function call. In other words, each call to double-all effectively consumes one cons cell from the input list and produces one cons cell in the output list. For that reason, the input and output lists must have the same number of cons cells and, hence, the same number of elements.

16.7 Hierarchical/Deep/Nested Lists

The syntax of Scheme expressions allows lists that contain other lists as elements. Indeed, lists may contain lists that contain other lists that contain other lists, and so on, to any desired depth.

- A list that has at least one element that is itself a list is called a hierarchical (or deep or nested) list.

- A list that does not contain any lists as elements is sometimes called a flat list.

For example, the expression \((x \ (2 \ (3) \ 2) \ #t)\) denotes a hierarchical list whose three elements are: the symbol \(x\), the subsidiary list \((2 \ (3) \ 2)\), and the boolean \(#t\). This section demonstrates that recursively processing hierarchical lists is frequently only slightly more complicated than recursively processing flat lists. Indeed, when recursively processing the items in a deep list, it often happens that one need only insert one extra case to handle the possibility that the item currently under consideration is itself a list.

- By convention, functions that recursively process hierarchical lists frequently have names ending in an asterisk (e.g., sum-all* instead of sum-all).

Example 16.7.1: Summing the items in a hierarchical list

Summing all of the items in a hierarchical list turns out to be only slightly more involved that summing the items in a flat list. (You may wish to review the sum-all function defined in Example 16.2.2.) The contract for the hierarchical version, called sum-all*, is given below, followed by some examples of its use.

```scheme
;; SUM-ALL*
;; -----------------------------------------------
;; INPUT: HLISTY, a (possibly hierarchical) list of numbers
;; OUTPUT: The sum of all of the numbers appearing anywhere
```
You may recall that the sum-all function contained a cond expression with two cases: a base case and a recursive case. Below, the sum-all* function includes an extra recursive case that handles the possibility that the item currently under consideration (i.e., (first hlisty)) is itself a list.

\[
\text{You may recall that the sum-all function contained a cond expression with two cases: a base case and a recursive case. Below, the sum-all* function includes an extra recursive case that handles the possibility that the item currently under consideration (i.e., (first hlisty)) is itself a list.}
\]

\[
\text{(define sum-all*)}
\]
\[
\text{(lambda (hlisty)}
\]
\[
\text{(cond}
\]
\[
\text{;; Base Case: HLISTY is empty}
\]
\[
\text{((null? hlisty)}
\]
\[
\text{0)}
\]
\[
\text{;; Recursive Case 1: First element of HLISTY is a list}
\]
\[
\text{((list? (first hlisty)}
\]
\[
\text{(+ (sum-all* (first hlisty))}
\]
\[
\text{(sum-all* (rest hlisty))))})}
\]
\[
\text{;; Recursive Case 2: First element of HLISTY is not a list}
\]
\[
\text{(else}
\]
\[
\text{(+ (first hlisty)}
\]
\[
\text{(sum-all* (rest hlisty))))}))}
\]

\[
\text{Notice that when (first hlisty) is itself a list, it follows that both (first hlisty) and (rest hlisty) are lists. Therefore, the sum-all* function can be recursively applied to both of these lists, and the results added together to generate the desired sum. For example, if hlisty is the list (\{(1 2 (3)) 4 (5 1)\}), then (first hlisty) is the list (1 2 (3)) and (rest hlisty) is the list (4 (5 1)). Recursively applying sum-all* to these two lists yields the results, 6 and 10, respectively. The sum of these two numbers (i.e., 16) is the sum of all of the numbers in hlisty.}
\]

\[
\text{⇒ Notice that, as usual, we let the recursive function calls do most of the work!}
\]

\[
\text{Note. Using the list? predicate (e.g., in Recursive Case 1, above) to check whether (first hlisty) is a list can be terribly inefficient because, in cases where (first hlisty) happens to be a long list, the list? predicate will walk down its entire length, checking that it is a well formed chain of cons cells. Instead, if we assume that hlisty does not contain any malformed chains of cons cells, we can greatly increase the efficiency of Recursive Case 1 by using the quick-list? predicate, defined below.}
\]

\[
\text{;; QUICK-LIST?}
\]
\[
\text{;; -------------------------------}
\]
\[
\text{;; INPUT: DATUM, anything}
\]
\[
\text{;; OUTPUT: #t if DATUM is either () or a cons cell;}
\]
\[
\text{;; #f otherwise.}
\]

\[
\text{(define quick-list?}
\]
\[
\text{(lambda (datum)}
\]
\[
\text{(or (null? datum) (cons? datum))))}
\]

\[
\text{Unlike list?, the quick-list? predicate does not walk down any chains of cons cells; instead, if datum is a cons cell, it simply assumes that it is the first cons cell in a well formed chain (i.e., that it is a non-empty list).}
\]
The rest of the examples in this section assume that all hierarchical lists are well formed (i.e., that they do not contain any malformed chains of cons cells).

Example 16.7.2: Top-level elements vs. leaf items in hierarchical lists

Recall In-Class Problem 16.2.2, whose goal was to define a function to compute the number of elements in a flat list. Here is one solution:

```scheme
;; LENGTHY
;; ----------------------------------------------
;; INPUT: LISTY, any list
;; OUTPUT: The number of elements of LISTY (i.e., its length)
(define lengthy
  (lambda (listy)
    (cond ;; Base Case: LISTY is empty
          ((null? listy) ;; No elements in the empty list
            0)
          ;; Recursive Case: LISTY is non-empty
          (else ;; (FIRST LISTY) is one element; the recursive
                   ;; function call counts the REST of the elements
                   ;; (+ 1 (lengthy (rest listy)))))))
```

As demonstrated below, the `lengthy` function does not care whether the individual elements of `listy` are symbols, numbers, booleans, or ... even other lists! Thus, it counts what we sometimes call the *top-level elements* of `listy`.

```
> (lengthy '(a b c d e))
5
> (lengthy '(x (1 1) (2 (3) 2) y))
4
> (lengthy '((((((3 3 3)))))))
1
```

For contrast, the function, `num-leaf-items*`, counts the number of so-called *leaf items* in a possibly hierarchical list—that is, the items that appear at any level of the hierarchy.

```scheme
;; NUM-LEAF-ITEMS*
;; ----------------------------------------------
;; INPUT: HLISTY, a (possibly hierarchical) list
;; OUTPUT: The number of items that appear in HLISTY
;;     at any level of the hierarchy.
```

Here is how `num-leaf-items*` treats the same lists encountered above:

```
> (num-leaf-items* '(a b c d e))
5
> (num-leaf-items* '(x (1 1) (2 (3) 2) y))
7
> (lengthy '((((((3 3 3)))))))
3
```
Notice that for flat lists such as (a b c d e), where each item occurs as a top-level element, num-leaf-items* outputs the same answer as lengthy. However, num-leaf-items* treats hierarchical lists much differently. Note that it does not count subsidiary lists, but only the primitive data that appear within them. Thus, (num-leaf-items* '(x (1 1) (2 (3) 2) y)) outputs 7, for the seven leaf items: x, 1, 1, 2, 3, 2 and y.

Although num-leaf-items* descends into the hierarchy of the input list, counting all the leaf items it finds along the way, defining this function is not difficult—as long as we let recursive function calls do most of the work! The following solution demonstrates that num-leaf-items* need only include one additional case, to handle the possibility that the element currently under consideration is itself a list:

```scheme
(define num-leaf-items* 
  (lambda (hlisty) 
    (cond 
      ;; Base Case: HLISTY is empty 
      (null? hlisty) 0) 
      ;; Recursive Case 1: (FIRST HLISTY) is itself a list! 
      ((quick-list? (first hlisty)) 
        ;; Recursive calls on (FIRST HLISTY) and (REST HLISTY) 
        ;; compute the numbers of items in each part of HLISTY. 
        (+ (num-leaf-items* (first hlisty)) 
           (num-leaf-items* (rest hlisty)))) 
      ;; Recursive Case 2: (FIRST HLISTY) is NOT a list 
      (else 
        ;; Count 1 for (FIRST HLISTY); let the recursive 
        ;; function call count the items in (REST HLISTY). 
        (+ 1 (num-leaf-items* (rest hlisty)))))))
```

Notice that the Base Case and Recursive Case 2 are completely analogous to the Base Case and Recursive Case for lengthy. The only difference is the insertion of Recursive Case 1, which handles the possibility that (first hlisty) is itself a list. And that case is easily handled because, in that case, (first hlisty) and (rest hlisty) are both lists. Recursively applying num-leaf-items* to both of those lists, and then summing the results, gives the desired answer.

In-Class Problem 16.7.1: A hierarchical version of the map function

Define a function, called map*, that satisfies the following contract:

```scheme
;; MAP* 
;; ------------------------------------------------------------- 
;; INPUTS: FUNC, a function that expects one input 
;; HLISTY, a (possibly hierarchical) list of 
;; suitable inputs for FUNC 
;; OUTPUT: A list with the same structure as HLISTY, where 
;; each item is obtained by applying FUNC to the 
;; corresponding item in HLISTY.
```

Here are some examples of its behavior:

```
> (map* abs '(((1) (2 -3) (-4 ((5)))) 
(((1) (2 3) (4 ((5)))))
> (map* (lambda (x) (* x x)) '(1 (2 (3 (4) 5) 6) 7))
(1 (4 (9 (16) 25) 36) 49)
```
In-Class Problem 16.7.2: Flattening a hierarchical list

Define a function, called `flatten`, that satisfies the following contract:

```
;; FLATTEN*
;; ----------------------------------------------
;; INPUT: HLISTY, a (possibly hierarchical) list
;; OUTPUT: A flat (i.e., non-hierarchical) list that contains
;;         all of the items from HLISTY "in the same order".
```

Here are some examples of its behavior:

```
> (flatten* '((4 2) 3 (x (y))))
(4 2 3 x y)
> (flatten* '(1 (2 (3) 4) 5))
(1 2 3 4 5)
```

Hint: In one case, use the built-in `append` function; in another, use `cons`.

16.8 Functions that can be Applied to Variable Numbers of Inputs

Recall that many of the built-in functions can be applied to variable numbers of inputs. For example, the built-in addition and multiplication functions can each be applied to zero or more inputs, as illustrated below.

```
> (+)
0
> (+ 10 20)
30
> (+ 100 10 1)
111
> (+ 1000 200 30 4)
1234
> (*)
1
> (* 1 2 3 4 5)
120
> (* 10 10 10)
1000
```

Similarly, the built-in subtraction and division functions can each be applied to one or more inputs.

Given that function application in Scheme is provided through the evaluation of non-empty lists, it might not surprise you to learn that defining a function that can be applied to variable numbers of inputs can be handled by collecting the variable number of inputs into a list. As will be seen below, a slight extension to the syntax for the `lambda` special form enables this new capability.

Extending the Syntax of the `lambda` Special Form. In addition to the syntax shown in Chapter 7, the `lambda` special form also supports the following syntax.

```
(lambda args
    expr_1
    expr_2
    ...
    expr_k)
```
where args can be any symbol expression. When such a function is applied to some number of inputs, those inputs are packaged together into a list, and that list of inputs becomes the value for the symbol args in the local environment inside the function-call box. Thus, inside the function-call box, this function behaves as though it received a list as its only input.

Example 16.8.1: Defining a function that can be applied to a variable number of inputs

For this example, we aim to define a function that can take any number of numerical inputs. To make things simple, this function will simply multiply those inputs together. We begin by defining a similar function that takes a single input that contains a list of numbers.

```scheme
;; MY-MULTY
;; ---------------------------------------------
;; INPUTS: A list of numbers
;; OUTPUT: The product of the numbers in that list
(define my-multy
  (lambda (listy)
    (if (null? listy)
        1
        (* (first listy)
           (my-multy (rest listy))))))
```

With my-multy in hand, the desired function, my-multy-multy, can be easily defined using the new syntax for the lambda special form, as follows.

```scheme
;; MY-MULTY-MULTY
;; ---------------------------------------------
;; INPUTS: Any number of numbers
;; OUTPUT: The product of those numbers
(define my-multy-multy
  (lambda args
    ;; Since ARGs is a LIST of numbers...
    (my-multy args)))
```

The following interactions demonstrate the difference between my-multy and my-multy-multy.

```scheme
> (my-multy '(1 2 3 4))
24
> (my-multy-multy 1 2 3 4)
24
> (my-multy '(10 10 10))
1000
> (my-multy-multy 10 10 10)
1000
```

Using the above example as a guide, we could convert any function that takes a single input that is a list into an equivalent function that can be applied to inputs that are drawn from such a list. However, we can also take a more direct approach to defining a function like my-multy-multy by using the built-in apply function.
Example 16.8.2: The built-in apply function

The built-in apply function satisfies the following contract:

;; APPLY -- built-in
;; --
;; INPUTS: FUNC, a function
;; LISTY, a list of suitable inputs for FUNC
;; OUTPUT: The result of applying FUNC to the inputs in LISTY

The following interactions demonstrate the difference between applying a function (e.g., the built-in addition function) to a variable number of inputs versus using apply to apply that same function to the elements of a given list.

> (+ 100 10 1)
111
> (apply + '(100 10 1))
111
> (* 1 2 3 4 5)
120
> (apply * '(1 2 3 4 5))

There is little mystery behind the built-in apply function...

Example 16.8.3: Implementing our own version of apply

;; MY-APPLY
;; --
;; INPUTS: FUNC, a function
;; LISTY, a list of suitable inputs for FUNC
;; OUTPUT: The result of applying FUNC to the elements
;; of LISTY

(define my-apply
 (lambda (func listy)
 (eval (cons func listy)))))

> (my-apply + '(1 2 3 4))
10
> (my-apply * '(10 10 10))
1000

Example 16.8.4: A more direct approach to defining a function that can be applied to a variable number of inputs

;; MY-MULTY-MULTY-V2
;; --
;; INPUTS: Any number of numerical inputs
;; OUTPUT: The product of those numbers
(define my-multy-multy-v2
 (lambda args
 (cond
 ;; Base Case: ARGS is empty
 ((null? args)
 1)
 ;; Recursive Case: ARGS is non-empty
 (else
 (* (first args)
 ;; Since (REST ARGS) is a LIST of numbers...
 (apply my-multy-multy-v2 (rest args)))))))

Note the use of apply in the last line. It is needed because my-multy-multy-v2 is supposed to be applied to any number of numerical inputs, not a single input that is a list of numbers. Here are some examples of my-multy-multy-v2 in action.

> (my-multy-multy-v2 1 2 3 4)
24
> (my-multy-multy-v2 10 10 10)
1000

Special Forms Introduced in this Chapter

time Displays timing information

Built-in Functions Introduced in this Chapter

abs Computes the absolute value of its input
first, rest Accessor functions for lists
cons Create a new list by attaching a new item to the front of a given list
cons? Type-checker for cons cells
second, third, fourth, etc. Additional accessor functions for lists
list Create a list containing the specified items
member Does an item appear in a list?
map Apply given function to each element of a list, in turn
length Compute the number of elements in a list
list-ref Fetch the n^{th} element of a list—general purpose accessor function
append Concatenate two lists
reverse Reverse the elements of a list
sort Sort a list according to a given comparison function
apply Apply a function to the elements of a given list