Warm-up: Functions with conditional expressions

Class time

(define class-time?
 (lambda (time)
 ...?...))

> (class-time? 830)
#f
> (class-time? 1000)
#t
> (class-time? 1250)
#f

This works, but it’s bad coding style; it makes the function longer and more confusing than it needs to be.
Class time

(define class-time?
 (lambda (time)
 (and (>= time 900)
 (<= time 1015))))

This states the function very briefly: It will return true exactly when the two tests are true.

Lists of specific lengths

Singleton: One element, e.g., '(a)

Doubleton: Two elements, e.g., '(a b)

Tripleton: Three elements, e.g., '(a b c)

Singleton: One element, e.g., '(a)

In other words, a list whose rest is '().

(define singleton?
 (lambda (x)
 (and (list? x)
 (null? (rest x)))))

Doubleton: Two elements, e.g., '(a b)

In other words, a list whose rest is a singleton.

(define doubleton?
 (lambda (x)
 (and (list? x)
 (singleton? (rest x))))
Tripleton: Three elements, e.g., `(a b c)`
In other words, a list whose rest is a **doubleton**.

```scheme
(define tripleton?
  (lambda (x)
    (and (list? x)
      (doubleton? (rest x))))
```

Recursion on flat lists

Summing a list of numbers

```scheme
(define sum (lambda (x) ...?...))

> (sum '(1 2 3))
6
> (sum '(18 21 36))
75
> (sum '(7))
7
> (sum '())
0
```

Define a separate procedure for each possible length of the list

```scheme
(define sum-zero (lambda (x) 0))
(define sum-one (lambda (x) (+ (first x) 0)))
(define sum-two (lambda (x) (+ (first x) (+ (first (rest x)) 0))))
```

```scheme
(define sum-three (lambda (x) (+ (first x) (+ (first (rest x)) (+ (first (rest (rest x))) 0))))
```

Etc.
Problem with this approach

Nearly all of the procedures follow a single general pattern.

We're wasting effort in writing definitions that fit the pattern over and over.

Defining each sum procedure in terms of a simpler one

(define sum-zero
 (lambda (x)
 0))

(define sum-one
 (lambda (x)
 (+ (first x) (sum-zero (rest x)))))

(define sum-two
 (lambda (x)
 (+ (first x) (sum-one (rest x)))))

(define sum-three
 (lambda (x)
 (+ (first x) (sum-two (rest x)))))

... Etc. ...

sum-three: Procedure calls and return values

(sum-three '(1 2 3)) 6
 ▼
 (sum-two '(2 3)) 5
 ▼
 (sum-one '(3)) 3
 ▼
 (sum-zero '()) 0

sum-three: Evaluation

(sum-three '(1 2 3))
 ((lambda (x)
 (+ (first x)
 (sum-two (rest x))))
 '(1 2 3))
 (+ (first '(1 2 3))
 (sum-two (rest '(1 2 3))))
 (+ 1
 ((lambda (x)
 (+ (first x)
 (sum-one (rest x))))
 '(2 3))
 (+ 1
 (+ (first '(2 3))
 (sum-one (rest '(2 3))))))
sum-three: Evaluation, 2

\[
(+ 1
 (+ (first '(2 3))
 (sum-one (rest '(2 3)))))
\]

\[
(+ 1
 (+ 2 ((lambda (x)
 (+ (first x)
 (sum-zero (rest x)))
 '3)))
\]

\[
(+ 1
 (+ 2
 (+ (first '(3))
 (sum-zero (rest '(3))))))
\]

\[
6
\]

Problem with this case

We might not know the length of our longest list of numbers.

 We don't know how many different sum procedures we need to write.

sum-three: Evaluation, 3

\[
(+ 1
 (+ 2
 (+ (first '(3))
 (sum-zero (rest '(3))))))
\]

\[
(+ 1 (+ 2 (+ 3 (sum-zero '()))))
\]

\[
(+ 1 (+ 2 (+ 3 ((lambda (x) 0) '()))))
\]

\[
(+ 1 (+ 2 (+ 3 0))
\]

\[
(+ 1 (+ 2 3))
\]

\[
(+ 1 5)
\]

\[
6
\]

Split the problem into two cases

Notice that:

 sum-zero is different from all of the others.
 sum-one, sum-two, and sum-three are nearly identical.

Let's use (if ...) to handle these two groups separately.
(define sum
 (lambda (x)
 (if (null? x)
 <answer for zero-length list>
 <answer for non-zero-length list>))
)

Wishful thinking
Let’s pretend that we have already written a procedure called “sum” that works for lists of all possible lengths.

We’ll use the sum procedure to compute <answer for (rest x)> in our procedure definition.

Recursive definition of sum
(define sum
 (lambda (x)
 (if (null? x)
 0
 (+ (first x)
 <answer for (rest x)>))))

Isn’t this a circular definition?
Not quite.

The procedure sum is defined by a lambda expression that contains a reference to the sum procedure itself!
To evaluate `(sum x)`, we may need to evaluate `(sum (rest x))`.

 To evaluate `(sum (rest x))`, we may need to evaluate `(sum (rest (rest x)))`.
 ...Etc. ...

How does it stop?

You need to provide a stopping condition – the base case.
Eventually we need only to evaluate the expression `(sum '())`, which is zero.

sum: Procedure calls and return values

```
(sum '(1 2 3)) 6
   ↓
(sum '(2 3)) 5
   ↓
(sum '(3)) 3
   ↓
(sum '()) 0
```

Spoiler: You don’t need to take my word for it!
(declare racket/trace)
```
(define sum ...)
(trace sum)
(sum '(1 2 3 4))
```
sum: Evaluation

\[
\text{sum } '(1 2 3)
\]
\[
((\text{lambda } (x)
\quad \text{if null? } x
\quad 0
\quad (+ \text{first } (x) \text{ sum (rest } x)))
\quad '(1 2 3))
\]
\[
(\text{if null? } '(1 2 3)
\quad 0
\quad (+ \text{first } '(1 2 3)
\quad \text{sum (rest } '(1 2 3))))
\]
\[
(+ \text{first } '(1 2 3)
\quad \text{sum (rest } '(1 2 3))))
\]
\[
(+ 1 \text{ sum } '(2 3))
\]

sum: Evaluation, 2

\[
(+ 1 \text{ sum } '(2 3))
\]
\[
(+ 1
\quad (\text{lambda } (x)
\quad \text{if null? } x
\quad 0
\quad (+ \text{first } (x) \text{ sum (rest } x)))
\quad '(2 3))
\]
\[
(+ 1
\quad \text{if null? } '(2 3)
\quad 0
\quad (+ \text{first } '(2 3)
\quad \text{sum (rest } '(2 3)))))
\]

sum: Evaluation, 3

\[
(+ 1
\quad \text{if null? } '(2 3)
\quad 0
\quad (+ \text{first } '(2 3)
\quad \text{sum (rest } '(2 3)))))
\]
\[
(+ 1
\quad (+ \text{first } '(2 3)
\quad \text{sum (rest } '(2 3))))
\]
\[
(+ 1 (+ 2 \text{ sum } '(3)))
\]
\[
(+ 1 (+ 2
\quad (\text{lambda } (x)
\quad \text{if null? } x
\quad 0
\quad (+ \text{first } (x) \text{ sum (rest } x)))
\quad '(3))))
\]

sum: Evaluation, 4

\[
(+ 1 (+ 2
\quad \text{if null? } '(3)
\quad 0
\quad (+ \text{first } '(3)
\quad \text{sum (rest } '(3)))))
\]
\[
(+ 1 (+ 2
\quad (+ \text{first } '(3)
\quad \text{sum (rest } '(3))))))
\]
\[
(+ 1 (+ 2 (+ 3 \text{ sum } '()))))
\]
sum: Evaluation, 4

\[
(\text{+} \text{+} \text{+} \text{+} (\text{sum} \ '())))
\]
\[
(\text{+} \text{+} \text{+} (\text{lambda} \ (x))
 \text{if}(\text{null?} \ x)
 0
 (\text{+} \text{first} \ x) \text{(sum} \ (\text{rest} \ x)))
\) '()))
\]
\[
(\text{+} \text{+} \text{+} (\text{if} \ (\text{null?} \ '()))
 0
 (\text{+} \text{first} \ '())
 \text{(sum} \ (\text{rest} \ '())))
\)
\]
\[
(\text{+} \text{+} \text{+} 0)
\]
\[
6
\]

Recursive definition of sum

Stopping condition

Base case

Recursive case

\[
(\text{define sum} \ (\text{lambda} \ (x))
 \text{if}(\text{null?} \ x)
 0
 (\text{+} \text{first} \ x) \text{(sum} \ (\text{rest} \ x)))
\)

Problem: Square all numbers on a list

> (square-all '(1 2 3))
(1 4 9)

> (square-all '())
()
Defining each square procedure in terms of a simpler one

(define square-zero
 (lambda (x) '()))

(define square-one
 (lambda (x)
 (cons (square (first x))
 (square-zero (rest x))))))

(define square-two
 (lambda (x)
 (cons (square (first x))
 (square-one (rest x))))))

(define square-three
 (lambda (x)
 (cons (square (first x))
 (square-two (rest x))))))

... Etc ...

Split the problem into two cases

(define square-all
 (lambda (x)
 (if (null? x)
 ;; Base case:
 ;; List is empty; return the empty list
 '()
 ;; Recursive case:
 ;; List has at least one element; square it and
 ;; cons it onto the front of your answer.
 (cons (square (first x))
 (square-all (rest x)))))))

Recursive definition of square-all

(define square-all
 (lambda (x)
 (if (null? x)
 ;; Base case:
 ;; List is empty; return the empty list
 '()
 ;; Recursive case:
 ;; List has at least one element; square it and
 ;; cons it onto the front of your answer.
 (cons (square (first x))
 (square-all (rest x)))))))

(square-all '1 2 3) 1 4 9
(square-all '2 3) 4 9
(square-all '3) 9
(square-all '()) ()

(square-all '(1 2 3 4 5))
(square-all '(1 2 3))
(square-all '(-1 2 -3))

(square-all '())

(tester '(square-all '(1 2 3)))
(tester '(square-all '(-1 2 -3)))

(square-all '())

(square-all '())
We can do a similar thing for the cube function:

\[
\text{define } \text{cube} \\
(\lambda x. (* x x x))
\]

\[
\text{define } \text{cube-all} \\
(\lambda \text{lst}.
(\text{if (null? lst)};
() \\
(\text{cons (cube (first lst))}
\text{cube-all (rest lst)})))))
\]

\[
\text{tester '}(\text{cube-all '(1 2 3 4))}
\]

In fact, we can do the same thing for any procedure proc:

\[
\text{define } \text{proc-all} \\
(\lambda \text{proc lst}.
(\text{if (null? lst)};
() \\
(\text{cons (proc (first lst))}
\text{proc-all proc (rest lst)}))))
\]

\[
\text{tester '}(\text{proc-all \text{test-proc} '(1 2 3)})
\]

For proc-all, proc is a function being passed as a parameter to another function!

The particular abstraction we just defined is so convenient it’s part of the programming language – it’s the map function.

Flat recursion design pattern

\[
\text{define } \text{flat-recursion}
(\lambda x.
(\text{if (stop-cond? x)};
\text{base-case} \\
(\text{rec-case (first x)}
\text{flat-recursion (rest x)}))))
\]
Flat recursion design pattern

stop-cond? is a predicate

base-case is a constant, literal value

rec-case is a procedure of two parameters

Determine the length of a list

Scheme provides a built-in length function to compute the length of a list – but we can define our own!

```
(define compute-length
  (lambda (lst)
    (if (null? lst)
        0
        (+ 1 (compute-length (rest lst))))))
```

(tester '(compute-length '(1 2 3 4 5)))

(tester '(compute-length '(a b c d e f g h)))

(tester '(compute-length '()))

Fetch *n*th element of a list

In computer science, we often index elements of a list starting with index 0.

Thus, a list containing *n* elements would have its elements indexed as (0, 1, 2, …, *n*-1)

Fetch *n*th element of a list

Scheme provides a built-in function *list-ref* that fetches the *n*th 0-indexed element of a list – but we can define our own!

```
(define fetch-nth-elt
  (lambda (lst n)
    ;; Base case: *n* = 0
    (if (= n 0)
        ;; Zeroth element is the "first"
        (first lst)
        ;; Recursive case:
        (fetch-nth-elt (rest lst) (- n 1)))))
```

(tester '(fetch-nth-elt '(0 1 2 3 4 5) 0)
(tester '(fetch-nth-elt '(0 1 2 3 4 5) 3)
Acknowledgments

This lecture incorporates material from:

Tom Ellman
Luke Hunsberger