Warm-up: Functions with conditional expressions

Class time

(define class-time?
 (lambda (time)
 ...?...))

> (class-time? 830)
#f
> (class-time? 1000)
#t
> (class-time? 1250)
#f

This works, but it's bad coding style; it makes the function longer and more confusing than it needs to be.
Class time

(define class-time?
 (lambda (time)
 (and (>= time 900)
 (<= time 1015))))

This states the function very briefly: It will return true exactly when the two tests are true.

Lists of specific lengths

Singleton: One element, e.g., '(a)

In other words, a list whose rest is '().

(define singleton?
 (lambda (x)
 (and (list? x)
 (null? (rest x)))))

Doubleton: Two elements, e.g., '(a b)

In other words, a list whose rest is a singleton.

(define doubleton?
 (lambda (x)
 (and (list? x)
 (singleton? (rest x)))))

Tripleton: Three elements, e.g., '(a b c)
Tripleton: Three elements, e.g., '(a b c)
In other words, a list whose rest is a *doubleton*.

```
(define tripleton?
  (lambda (x)
    (and (list? x)
      (doubleton? (rest x))))
```

Recursion on flat lists

Summing a list of numbers

```
(define sum (lambda (x) ...?...))
```

> (sum '(1 2 3))
6
> (sum '(18 21 36))
75
> (sum '(7))
7
> (sum '())
0

Define a separate procedure for each possible length of the list

```
(define sum-zero
  (lambda (x)
    0))

(define sum-one
  (lambda (x)
    (+ (first x)
      0)))
```

```
(define sum-two
  (lambda (x)
    (+ (first x)
      (+ (first (rest x))
        0))))
```

```
(define sum-three
  (lambda (x)
    (+ (first x)
      (+ (first (rest x))
        (+ (first (rest (rest x)))
          0)))))
```

Etc.
Problem with this approach

Nearly all of the procedures follow a single general pattern.

We're wasting effort in writing definitions that fit the pattern over and over.

Defining each sum procedure in terms of a simpler one

```
(define sum-zero
  (lambda (x) 0))
(define sum-one
  (lambda (x)
    (+ (first x) (sum-zero (rest x)))))
(define sum-two
  (lambda (x)
    (+ (first x) (sum-one (rest x)))))
(define sum-three
  (lambda (x)
    (+ (first x) (sum-two (rest x)))))

... Etc. ...
```

sum-three: Procedure calls and return values

<table>
<thead>
<tr>
<th>Procedure Call</th>
<th>Return Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sum-three '(1 2 3))</td>
<td>6</td>
</tr>
<tr>
<td>(sum-two '(2 3))</td>
<td>5</td>
</tr>
<tr>
<td>(sum-one '(3))</td>
<td>3</td>
</tr>
<tr>
<td>(sum-zero '())</td>
<td>0</td>
</tr>
</tbody>
</table>

sum-three: Evaluation

```
(sum-three '(1 2 3))
((lambda (x)
    (+ (first x)
      (sum-two (rest x)))
  '(1 2 3))
(+ (first '(1 2 3))
  (sum-two (rest '(1 2 3))))
(+ 1
  ((lambda (x)
      (+ (first x)
        (sum-one (rest x)))
    '(2 3)))
(+ 1
  (+ (first '(2 3))
    (sum-one (rest '(2 3)))))
```
sum-three: Evaluation, 2

```
(+ 1
  (+ (first '(2 3))
      (sum-one (rest '(2 3)))))
(+ 1
  (+ 2 ((lambda (x)
        (+ (first x)
            (sum-zero (rest x))))
        '(3))))
(+ 1
  (+ 2
      (+ (first '(3))
          (sum-zero (rest '(3))))))
```

sum-three: Evaluation, 3

```
(+ 1
  (+ 2
      (+ (first '(3))
          (sum-zero (rest '(3)))))
(+ 1 (+ 2 (+ 3 (sum-zero '())))
(+ 1 (+ 2 (+ 3 ((lambda (x) 0) '())))
(+ 1 (+ 2 (+ 3 0)))
(+ 1 (+ 2 3))
(+ 1 5)
6
```

Problem with this case

We might not know the length of our longest list of numbers.

We don't know how many different sum procedures we need to write.

Split the problem into two cases

Notice that:

- `sum-zero` is different from all of the others.
- `sum-one, sum-two, and sum-three` are nearly identical.

Let's use `(if ...)` to handle these two groups separately.
(define sum
 (lambda (x)
 (if (null? x)
 <answer for zero-length list>
 <answer for non-zero-length list>))))

Wishful thinking

Let’s pretend that we have already written a procedure called “sum” that works for lists of all possible lengths.

We’ll use the sum procedure to compute <answer for (rest x)> in our procedure definition.

Recursive definition of sum

(define sum
 (lambda (x)
 (if (null? x)
 0
 (+ (first x)
 (sum (rest x))))))

Isn’t this a circular definition?

Not quite.

The procedure sum is defined by a lambda expression that contains a reference to the sum procedure itself!
To evaluate \((\text{sum } x)\), we may need to evaluate \((\text{sum } (\text{rest } x))\).

To evaluate \((\text{sum } (\text{rest } x))\), we may need to evaluate \((\text{sum } (\text{rest } (\text{rest } x)))\).

...Etc. ...

How does it stop?
You need to provide a stopping condition – the base case.
Eventually we need only to evaluate the expression \((\text{sum } '()\)), which is zero.

sum: Procedure calls and return values

\[
\begin{array}{c}
(\text{sum } '((1 2 3))) & 6 \\
(\text{sum } '((2 3))) & 5 \\
(\text{sum } '((3))) & 3 \\
(\text{sum } '()) & 0 \\
\end{array}
\]

Spoiler: You don’t need to take my word for it!

(require racket/trace)
(define sum ...)
(trace sum)
(\text{sum } '((1 2 3 4)))
sum: Evaluation

(sum '(1 2 3))

((lambda (x)
 (if (null? x)
 0
 (+ (first x) (sum (rest x)))))
 '(1 2 3))

(if (null? '(1 2 3))
 0
 (+ (first '(1 2 3))
 (sum (rest '(1 2 3)))))

(+ (first '(1 2 3))
 (sum (rest '(1 2 3)))))

(+ 1 (sum '(2 3)))

sum: Evaluation, 2

(+ 1 (sum '(2 3)))

(+ 1
 ((lambda (x)
 (if (null? x)
 0
 (+ (first x) (sum (rest x)))))
 '(2 3)))

(if (null? '(2 3))
 0
 (+ (first '(2 3))
 (sum (rest '(2 3)))))

sum: Evaluation, 3

(+ 1
 (if (null? '(2 3))
 0
 (+ (first '(2 3))
 (sum (rest '(2 3)))))

(+ 1
 (+ (first '(2 3))
 (sum (rest '(2 3)))))

(+ 1 (+ 2 (sum '(3))))

(+ 1 (+ 2
 ((lambda (x)
 (if (null? x)
 0
 (+ (first x) (sum (rest x)))))
 '(3)))))

sum: Evaluation, 4

(+ 1 (+ 2
 ((lambda (x)
 (if (null? x)
 0
 (+ (first x) (sum (rest x)))))
 '(3)))

(if (null? '(3))
 0
 (+ (first '(3))
 (sum (rest '(3)))))

(+ 1 (+ 2
 (+ (first '(3))
 (sum (rest '(3)))))))

(+ 1 (+ 2 (+ 3 (sum '()))))
sum: Evaluation, 4

\[(+1 + 2 (+3 (\text{sum }')))) \]

\[(+1 + 2 (+3 ((\lambda(x) \quad (\text{if } \text{null? } x) \quad 0 \quad (+ (\text{first } x) (\text{sum } (\text{rest } x))))')())) \]

\[(+1 + 2 (+3 (\text{if } \text{null? } '()) \quad 0 \quad (+ (\text{first } '()) \quad (\text{sum } (\text{rest } '()))))) \]

\[(+1 + 2 (+3 0)) \]

6

Recursive definition of sum

Stopping condition

Base case

Recursive case

(define sum
 (\lambda(x) \quad (\text{if } \text{null? } x) \quad 0 \quad (+ (\text{first } x) (\text{sum } (\text{rest } x))))))

Problem: Square all numbers on a list

> (square-all '(1 2 3))

(1 4 9)

> (square-all '())

()
Defining each square procedure in terms of a simpler one

(define square-zero
 (lambda (x) '()))
(define square-one
 (lambda (x)
 (cons (square (first x))
 (square-zero (rest x)))))
(define square-two
 (lambda (x)
 (cons (square (first x))
 (square-one (rest x)))))
(define square-three
 (lambda (x)
 (cons (square (first x))
 (square-two (rest x)))))

... Etc. ...

Split the problem into two cases

(define square-all
 (lambda (x)
 (if (null? x)
 ;; Base case:
 ;; List is empty; return the empty list
 '()
 ;; Recursive case:
 ;; List has at least one element; square it and
 ;; cons it onto the front of your answer.
 (cons (square (first x))
 (square-all (rest x)))))

Recursive definition of square-all

(define square-all
 (lambda (x)
 (if (null? x)
 ;; Base case:
 ;; List is empty; return the empty list
 '()
 ;; Recursive case:
 ;; List has at least one element; square it and
 ;; cons it onto the front of your answer.
 (cons (square (first x))
 (square-all (rest x))))))

(tester '(square-all '(1 2 3 4 5)))
(tester '(square-all '(-1 2 -3)))

Square-all: Procedure calls and return values

(square-all '(1 2 3)) (1 4 9)
(square-all '(2 3)) (4 9)
(square-all '(3)) (9)
(square-all '()) ()
We can do a similar thing for the cube function:

```
(define cube
  (lambda (x)
    (* x x x)))
(define cube-all
  (lambda (lst)
    (if (null? lst)
        '()
        (cons (cube (first lst))
              (cube-all (rest lst))))))
(tester '(cube-all '(1 2 3 4)))
```

In fact, we can do the same thing for *any* procedure proc:

```
(define proc-all
  (lambda (proc lst)
    (if (null? lst)
        ;; Base case: List is empty; return empty list.
        '()
        ;; Recursive case: List is non-empty. Cons result
        ;; of applying proc to first of lst...
        (cons (proc (first lst))
              ;; ...together with the rest of the answer.
              (proc-all proc (rest lst))))))
(define test-proc (lambda (x) (* x 100)))
(tester '(proc-all test-proc '(1 2 3)))
```

For proc-all, proc is a function being passed as a parameter to another function!

The particular abstraction we just defined is so convenient it's part of the programming language – it's the map function.

Flat recursion design pattern

```
(define flat-recursion
  (lambda (x)
    (if (stop-cond? x)
        base-case
        (rec-case (first x)
                  (flat-recursion (rest x))))))
```

Stopping condition

Base case

Recursive case
Flat recursion design pattern

stop-cond? is a predicate

base-case is a constant, literal value

rec-case is a procedure of two parameters

Determine the length of a list

Scheme provides a built-in length function to compute the length of a list – but we can define our own!

```scheme
(define compute-length
  (lambda (lst)
    (if (null? lst)
        0
        (+ 1 (compute-length (rest lst))))))
(tester '((compute-length '(1 2 3 4 5)))
(tester '((compute-length '(a b c d e f g h)))
(tester '((compute-length '()))
```

Fetch *n*th element of a list

In computer science, we often index elements of a list starting with index 0.

Thus, a list containing *n* elements would have its elements indexed as (0, 1, 2, ..., *n*-1)

Fetch *n*th element of a list

Scheme provides a built-in function `list-ref` that fetches the *n*th 0-indexed element of a list – but we can define our own!

```scheme
(define fetch-nth-elt
  (lambda (lst n)
    ;; Base case: n = 0
    (if (= n 0)
      ;; Zeroth element is the "first"
      (first lst)
      ;; Recursive case:
      (fetch-nth-elt (rest lst) (- n 1))))
(tester '((fetch-nth-elt '(0 1 2 3 4 5) 0)
(tester '((fetch-nth-elt '(0 1 2 3 4 5) 3)
Acknowledgments

This lecture incorporates material from:

- Tom Ellman
- Luke Hunsberger