How could we find the largest element in a list of numbers?

It's meaningless to ask what the largest element of the empty list is.
We'll assume our input is non-empty.
Our base case will be when there's only one element in the list.

First, we can define a helper function `max-2` that computes the maximum of two inputs:

```
(define max-2
  (lambda (x y)
    (if (>= x y) x y)))
```

(tester '(max-2 3 4))
(tester '(max-2 4 3))
Now we're ready to define `fetch-largest` for lists of arbitrary length!

```scheme
(define fetch-largest
  (lambda (lst)
    (if (null? (rest lst))
      ;; Base case:
      ;; If there's only one element, return it!
      (first lst)
      ;; Recursive case
      (max-2 (first lst)
           (fetch-largest (rest lst))))))
```

(tester '(fetch-largest '(3)))
(tester '(fetch-largest '(3 4)))
(tester '(fetch-largest '(4 3)))
(tester '(fetch-largest '(1 2 3 2 0 9 1 6 8)))

Last class we wrote `proc-all`, which is equivalent to the built-in `map` function.

We can combine `map` and `fetch-largest` to find the largest value of a procedure applied to the elements of a list:

```scheme
(fetch-largest
  (map sin
       '(0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0)))
```

Factorial

The **factorial** notation \(n! \) represents the product of all positive integers from 1 to \(n \), inclusive,

\[
 n! = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n
\]

Factorials are frequently computed in **combinatorics** when we're counting possibilities.
The factorial function can be defined recursively:

Recursive step: \(n! = n \cdot (n - 1)! \)

Base step: \(n = 1 \), in which case \(n! = 1! = 1 \)

Problem: factorial

(\(\text{define factorial} \ (\text{lambda} \ (n) \ ...?)\))

\[
> (\text{factorial} \ 4) \\
24 \\
> (* 4 (* 3 (* 2 (* 1 1)))) \\
24 \\
> (\text{factorial} \ 3) \\
6 \\
> (* 3 (* 2 (* 1 1))) \\
6 \\
> (\text{factorial} \ 1) \\
1 \\
> (\text{factorial} \ 0) \\
1
\]

Recursive definition of factorial

(\(\text{define factorial} \ (\text{lambda} \ (n) \ \\
 (\text{if} \ (\text{=} \ n \ 0) \\
 1 \\
 (* \ n \ (\text{factorial} \ (- \ n \ 1)))))))

(tester '(factorial 1))
(tester '(factorial 2))
(tester '(factorial 3))
(tester '(factorial 4))

Procedure calls and return values

- (factorial 3) 6
- (factorial 2) 2
- (factorial 1) 1
- (factorial 0) 1
Problem: Sum of squares
Write a function to add the squares of the first n numbers: $1^2 + 2^2 + \cdots + n^2$

What's the base case?
Recursive case?

(define sum-squares
 (lambda (n)
 (if (= n 1)
 1
 (+ (* n n)
 (sum-squares (- n 1))))))
(tester '(sum-squares 1))
(tester '(sum-squares 2))
(tester '(sum-squares 4))

Problem: Multiply a number by itself n times
(define power
 (lambda (base exponent)
 ...
)))

> (power 2 0)
1
> (power 2 1)
2
> (power 2 2)
4
> (power 2 3)
8

Constructing solution to larger problem from solution to smaller one
\[
b^n = b \cdot (b \cdot b \cdot b \cdots b)
\]
\[
b^{n-1}
\]

\[
b^n = b \cdot b^{n-1}
\]
Recursive definition of \texttt{power}

\begin{verbatim}
(define power
 (lambda (base exponent)
 (if (= exponent 0) 1
 (* base
 (power base (- exponent 1))))))
\end{verbatim}

Acknowledgments

This lecture incorporates material from:

Tom Ellman
Luke Hunsberger