
Computer Science I 
Problem-Solving and Abstraction

Prof. Jonathan Gordon
Lecture 12

CMPU 101 § 55

Locally defined data

The global environment is a table that holds the
values assigned to variables.

Each time Scheme processes a (define …)
expression typed into the top-level prompt, it adds
a new entry to the table, e.g.,

> (define w1 0.25)
> (define w2 0.75)

Global Environment

w1 0.25
w2 0.75

We’ve seen that lambda expressions evaluate to
procedures

> (lambda (x y) (+ x y)) 
#<procedure>

and the symbols in the argument list of a lambda
expression play a special role:

> ((lambda (x y) (+ x y)) 1 2) 
3

When the procedure is applied to a set of input expressions, the
expressions in the body of the lambda expression are evaluated in
order.

When those expressions are evaluated, occurrences of the argument
symbols evaluate to the corresponding input expressions.

What happens if a function has an input with the
same name as an entry in the global environment?

;; Define a global variable named x. 
(define x 42)

;; Define a procedure that uses the symbol  
;; x to represent its argument. 
(define mult-by-10 
 (lambda (x) 
 (* x 10)))

> x 
42

>(mult-by-10 1) 
10

We see that x has different values depending on
where it’s being evaluated.

When it’s the argument to mult-by-10, it has the value passed to
the function.

;; Define a global variable named x. 
(define x 42)

;; Define a procedure that uses the symbol  
;; y to represent its argument -- but uses  
;; x in its body. 
(define mult-by-10-v2 
 (lambda (y) 
 (* x 10)))

> x 
42

> (mult-by-10-v2 1) 
420

When x isn’t the name of an argument, it’s
evaluated in the normal way by looking it up in the
global environment.

The input (y = 1) is ignored!

When a function defined by a lambda expression is
called, a local environment is created.

Suppose Scheme evaluates an expression
(⟨procedure⟩ ⟨arg-1⟩ … ⟨arg-n⟩)

and ⟨procedure⟩ is defined by the expression
(lambda (⟨p-1⟩ … ⟨p-n⟩) ⟨body⟩)

Scheme creates a local environment in which each parameter ⟨p-i⟩ is
assigned the value of the corresponding argument ⟨arg-i⟩.

(define ⟨procedure⟩ 
 (lambda (⟨v-1⟩ … ⟨v-n⟩)  
 ⟨body⟩)

Environment for evaluating ⟨body⟩:

(⟨procedure⟩ ⟨arg-1⟩ … ⟨arg-n⟩)

Global Environment

⟨var-1⟩ ⟨val-1⟩
⟨var-2⟩ ⟨val-2⟩

…
⟨var-n⟩ ⟨val-n⟩

Local Environment

⟨v-1⟩ ⟨arg-1⟩
⟨v-2⟩ ⟨arg-2⟩

…
⟨v-n⟩ ⟨arg-n⟩

if not found

When we use define, it creates an entry in the
current environment – which may not be the global
environment!

(define silly-func 
 (lambda (x) 
 (define y x) 
 y))
> (silly-func 42) 
42
> y 
Error: y: undefined

☹

Because this is confusing, you should only use the
define special form at the global level, i.e., not
inside any other expression.

So, how should we create local variables?

Let there be (let …)

The let special form defines one or more local
variables:

(let ((⟨variable 1⟩ ⟨expression 1⟩)  
 (⟨variable 2⟩ ⟨expression 2⟩)  
 … 
 (⟨variable n⟩ ⟨expression n⟩)) 
 ⟨body 1⟩ 
 ⟨body 2⟩ 
 … 
 ⟨body k⟩)

Evaluation of let special form

1. A new local environment is created inside the
current environment.

2. Each symbol ⟨variable i⟩ is associated with the
result of evaluating the corresponding ⟨expression
i⟩.

3. The expressions ⟨body 1⟩ … ⟨body k⟩ are
evaluated in turn.

Whenever one of the symbols ⟨variable i⟩ must be evaluated, the
corresponding value in the local environment is used.

Using let, we can give more meaningful names to
expressions:

(define distance 
 (lambda (pt1 pt2) 
 (let ((x1 (first pt1)) 
 (y1 (second pt1)) 
 (x2 (first pt2)) 
 (y2 (second pt2))) 
 (sqrt (+ (expt (- x2 x1) 2) 
 (expt (- y2 y1) 2))))))

> (distance '(1 2) '(3 4)) 
2.8284271247461903

Local let environments supersede
the global environment
> (define x 1000)
> (define y 100)
> (define z 10)
> (+ x y z) 
1110
> (let ((x 3) 
 (y 4)) 
 (+ x y z)) 
17

(define w1 0.25)
(define w2 0.75)
(define weighted-average 
 (lambda (x y) 
 (+ (* w1 x) (* w2 y))))

(weighted-average 75 85)

Environment for evaluating 
(+ (* w1 x) (* w2 y)):

Global Environment

w1 0.25
w2 0.75

Local Environment

x 75
y 85

(define w1 0.25)
(define w2 0.75)
(define weighted-average 
 (lambda (x y) 
 (let ((t1 (* w1 x))  
 (t2 (* w2 y))) 
 (+ t1 t2))))
(weighted-average 75 85)

Environment for evaluating (* w1 x) and  
(* w2 y):

Global Environment

w1 0.25
w2 0.75

Local Environment

x 75
y 85

Environment for evaluating (+ t1 t2):

Global Environment

w1 0.25
w2 0.75

Local Environment

x 75
y 85

Local Environment

t1 18.75
t2 63.75

(define w1 0.25)
(define w2 0.75)
(define weighted-average 
 (lambda (x y) 
 (let ((w1 0.33) 
 (w2 0.67)) 
 (+ (* w1 x) (* w2 y)))))
(weighted-average 75 85)

Environment for evaluating (+ (* w1 x) (* w2 y)):

Local Environment

w1 0.33
w2 0.67

Local Environment

x 75
y 85

Global Environment

w1 0.25
w2 0.75

Nesting environments

Each new local environment lies inside the previous
one.

To find the value of a variable, Scheme looks at the
innermost environment first, and proceeds
outward until finding a value for the variable.

A new local variable may therefore make an
existing local or global variable inaccessible.

let is just a convenient abbreviation

We can re-write any let statement in terms of the
lambda expressions we’ve been using all along:

> (define z 1000)
> (let ((x 3) 
 (y 4)) 
 (* x y z)) 
12000
> ((lambda (x y) 
 (* x y z)) 
 3 4) 
12000

The local variables we define in a let expression
are all computed with respect to the parent
environment, which might be the global
environment, a lambda expression, or another let
expression:

> (define x 100)

> (let ((x 44) 
 (y (* x 2))) 
 (list x y)) 
(44 200)

Often we want to carry out some complex
computation incrementally, building up
intermediate values that we’d like to store in
separate local variables.

To do this with let statements, we need to nest them so each
variable is defined in a local environment that inherits from the
previous one.

We defined a function to calculate the distance
between two points.

(Assuming a flat grid; a round planet makes things harder!)

What if we want to print our mileage from the
start as we go on a trip?

(define print-mileage 
 (lambda (start dest1 dest2) 
 (let ((miles1 (distance start dest1))) 
 (let ((miles2 (+ miles1 (distance dest1 dest2)))) 
 (let ((avg (/ (+ miles1 miles2) 2))) 
 (printf "Leg 1: ~A~%Leg 2: ~A~%Avg: ~A~%" 
 miles1 miles2 avg)))))))

We can get the same effect using let* instead of
nested let expressions.

In a let* expression, the values used to initialize a local variable can
refer to the local variables that have already been given values (i.e.,
that appear earlier in the let* expression).

(define print-mileage 
 (lambda (start dest1 dest2) 
 (let* ((miles1 (distance start dest1)) 
 (miles2 (+ miles1 (distance dest1 dest2))) 
 (avg (/ (+ miles1 miles2) 2))) 
 (printf "Leg 1: ~A~%Leg 2: ~A~%Avg: ~A~%" 
 miles1 miles2 avg)))))))

When a let special form is evaluated, the first
thing that happens is that all of the initializing
expressions are evaluated with respect to the
parent context.

Only after that is the local environment created, containing entries
for each of the variable–value pairs.

In contrast, when a let* special form is evaluated,
the local environment is built incrementally as each
initializing expression is evaluated.

Each initializing expression is evaluated with respect to the version of
the local environment that’s been created so far.

(let* ((a 1) 
 (b (* a 2)) ; {a=1} 
 (c (* a b 2)) ; {a=1, b=2} 
 (d (* a b c))) ; {a=1, b=2, c=4} 
 (list a b c d))

Locally defined procedures

When we’ve defined procedures at the global level,
we’ve used define to provide a name for the
procedure and a lambda expression to provide a
specification for what the procedure does.

We can do the same thing using a let expression
to define a local function.

A local function is convenient when you don’t
expect to use it elsewhere, e.g.,

(define cube-list 
 (lambda (lst) 
 (let ((local-cube-func 
 (lambda (x) (* x x x)))) 
 (map local-cube-func lst))))
(cube-list '(1 2 3 4))

To define a local variable that’s a recursive function,
we need the letrec special form.

Why can’t we use let or let* to do this?

General form of letrec expressions

Defining an arbitrary number of local variables
including recursive procedures:

(letrec ((⟨variable 1⟩ ⟨expression 1⟩)  
 (⟨variable 2⟩ ⟨expression 2⟩)  
 … 
 (⟨variable n⟩ ⟨expression n⟩))  
 ⟨body⟩)

Evaluation of letrec special form

1. The local environment is created first – before
any of the initializing expressions have been
evaluated.

2. Each of the variables is given a special
placeholder value, #<undefined>.

3. Each of the initializing expressions is evaluated in
turn with respect to the local environment.

Any variable can refer to any other variable – but it might get the
value #<undefined> if that variable is defined after it!

letrec can do anything let* can do:
(let* ((x 3) 
 (y (* x 4)) 
 (z (* y 1000))) 
 (list x y z))

(letrec ((x 3) 
 (y (* x 4)) 
 (z (* y 1000))) 
 (list x y z))

But letrec can also deal with locally defining
recursive functions, where the variable being
defined is used in the expression being given for it.

When we used accumulators to solve problems,
we often wrote a helper function whose only use
was to be called by the corresponding wrapper
function.

In these cases, it makes sense to define the helper
function as a local procedure.

Old way
(define fact-helper 
 (lambda (n acc) 
 (if (< n 1) 
 acc 
 (fact-helper (- n 1) (* acc n)))))
(define fact 
 (lambda (n) 
 (fact-helper n 1)))

New way
(define fact 
 (lambda (n) 
 (letrec ((helper 
 (lambda (m acc) 
 (if (< m 1) 
 acc 
 (helper (- m 1) 
 (* acc m)))))) 
 (helper n 1))))

reverse and reverse-helper
(define reverse-helper 
 (lambda (lst answer) 
 (if (null? lst) 
 answer 
 (reverse-helper (rest lst) 
 (cons (first lst) 
 answer)))))
(define reverse 
 (lambda (lst) 
 (reverse-helper lst '())))

reverse with local definition of
reverse-helper
(define reverse 
 (lambda (lst) 
 (letrec ((helper 
 (lambda (lst answer) 
 (if (null? lst) 
 answer 
 (helper (rest lst) 
 (cons (first lst) 
 answer)))))) 
 (helper lst '())))

Why define a local function?

Bundling a main procedure and a helper procedure
into a single package.

Allowing us to re-use the name of the helper
procedure elsewhere in the program.

Greater efficiency!

Counting the number of occurrences
of an item in a list
(define count (lambda (item lst) …?…)

> (count 'e '(a k q r e d t e)) 
2
> (count 'e '(e (e) e)) 
2
> (count 'e '()) 
0

count and count-helper
(define count 
 (lambda (item lst) 
 (count-helper item lst 0)))

(define count-helper 
 (lambda (item lst cnt) 
 (cond ((null? lst) 
 cnt)

 ((equal? item (first lst)) 
 (count-helper item (rest lst) (+ 1 cnt)))

 (else 
 (count-helper item (rest lst) cnt)))))

count with local helper
(define count 
 (lambda (item lst) 
 (letrec ((helper 
 (lambda (item lst cnt) 
 (cond ((null? lst) 
 cnt)

 ((equal? item (first lst)) 
 (helper item (rest lst) 
 (+ 1 cnt)))

 (else 
 (helper item (rest lst) 
 cnt))))))

 (helper item lst 0))))

helper takes item as its first argument.

When helper calls itself, it uses item as the first
parameter sent to the recursive invocation of
helper.

The parameter item gets passed from one
invocation of helper to the next without being
changed.

How can we avoid this useless effort?

We are wasting (Scheme’s) time
again!

count with local helper (referencing a
non-local variable)
(define count 
 (lambda (item lst) 
 (letrec ((helper 
 (lambda (lst cnt) 
 (cond ((null? lst) 
 cnt)

 ((equal? item (first lst)) 
 (helper (rest lst) (+ 1 cnt)))

 (else 
 (helper (rest lst) cnt))))))

 (helper lst 0))))

Values of non-local variables

The (new) definition of helper includes a reference
to item.

The variable item is no longer a parameter to
helper; item is called a “non-local variable”.

Where does item get its value?
From the variable called “item” that is a parameter of the
surrounding count procedure definition.

Acknowledgments

This lecture incorporates material from:
Tom Ellman

Luke Hunsberger

