The sorting problem

Suppose we have a list of numbers and want to produce the same list in ascending (i.e., increasing non-decreasing) order.

We need a function that consumes a list of numbers and produces a list of numbers, such that the output list of numbers is sorted in ascending order.

Sorting may not sound like a major problem, but vast computational power is used to sort enormous data sets.

Therefore people have devised many sorting algorithms – general methods – which vary in running time, i.e., the number of steps taken by the algorithm.

Running time is expressed in terms of \(n \), the size of the input, and the lower, the better.

Approach 1: Insertion sort
Consider an unordered list of numbers:
> (define unordered '(5 3 6 2))
The first element is 5.
The rest is (3 6 2).
We can sort the rest: (2 3 6).
And then insert 5 into the sorted list: (2 3 5 6).

This is a simple recursive method of sorting named *insertion sort*.

To define the insertion sort algorithm, we need a function that, given a number and a sorted list, returns a new list with the number placed in the appropriate location.

;; INSERT
;; -------
;; INPUTS: NUM, a number
;; SORTED, a list of numbers already sorted
;; into non-decreasing order.
;; OUTPUT: The list obtained by inserting NUM into SORTED
;; while preserving the non-decreasing ordering.
(define insert
 (lambda (num sorted)
 (cond
 ;; Base case 1: SORTED is empty
 ((null? sorted)
 (list num))
 ;; Base case 2: We found where NUM goes
 ((<= num (first sorted))
 (cons num sorted))
 ;; Recursive case: We haven't found where NUM goes
 (else
 (cons (first sorted)
 (insert num (rest sorted)))))))

;; INSERT
;; -------
;; INPUTS: NUM, a number
;; SORTED, a list of numbers already sorted
;; into non-decreasing order.
;; OUTPUT: The list obtained by inserting NUM into SORTED
;; while preserving the non-decreasing ordering.
(define insert
 (lambda (num sorted)
 (cond
 ;; Base case 1: SORTED is empty
 ((null? sorted)
 (list num))
 ;; Base case 2: We found where NUM goes
 ((<= num (first sorted))
 (cons num sorted))
 ;; Recursive case: We haven't found where NUM goes
 (else
 (cons (first sorted)
 (insert num (rest sorted)))))))
Now that we have a way to insert numbers into an already sorted list, we still need a function that takes a totally unordered list of numbers and returns the same numbers sorted in non-decreasing order.

- **Insertion sort**

- **Insertion sort: accumulator version**
How many items in a list of n items will insertion sort need to compare?

To insert the first element, it might need to go through the other $n - 1$ items.
To insert the second element, it might need to go through $n - 2$ items.

So, $(n - 1) + (n - 2) + \cdots + 1 = n^2/2$

Since 1/2 is a constant factor, we simplify this and say that insertion sort has a worst case performance of n^2 operations, written $O(n^2)$

Variant: Sorting strings

Comparing strings

```scheme
> (string<=? "aardvark" "zebra")
#t
> (string<=? "zebra" "aardvark")
#f
```

String comparison predicates:

- string<?
- string<=?
- string>?
- string=>?

Modify insert for strings

```scheme
(define insert-string
  (lambda (item lst)
    (cond ((null? lst)
                (list item))
          ((string<=? item (first lst))
                (cons item lst))
          (else
                (cons (first lst)
                          (insert-string item (rest lst)))))))
```
Modify insertion-sort for strings

(define insertion-sort-strings
 (lambda (lst)
 (if (null? lst)
 '()
 (insert-string
 (first lst)
 (insertion-sort-strings
 (rest lst))))))

Generating data to sort

Pseudorandom numbers and nondeterminism

Every function we’ve seen so far is deterministic, i.e., given an input, it will always return the same result.

An example of a nondeterministic function is random, which takes as its input an upper bound and generates a random number \(i \), such that \(0 < i < \text{bound} \):

\[
> \text{(random 2)} \;; \text{Flip a coin} \\
0
\]

\[
> \text{(random 6)} \;; \text{Roll a die} \\
4
\]

“Pseudorandom?”

How random does something need to be to be random?

How can anything a computer does really be random?

Approaches:

- User inputs (keyboard, mouse)
- Atmospheric noise
- Radio static

Why does this matter?
Generating a list of random numbers in the range 0 to (bound – 1)

;; RANDOM-NUMS
;; -----------
;; INPUTS: N, a positive integer
;; OUTPUT: A list containing N numbers, each randomly
;; generated from the set {0, 1, ... BOUND - 1}
(define random-nums
 (lambda (n bound)
 (if (<= n 0)
 ;; Base case: No (more) numbers to generate
 '()
 ;; Recursive case:
 ;; Generate at least one more number
 (cons (random bound)
 (random-nums (- n 1) bound)))))

> (define data (random-nums 10000 100000))
> (time (insertion-sort data) #t)
cpu time: 4816 real time: 4871 gc time: 446 #t

Approach 2: Merge sort

The *merge sort* algorithm uses a “divide and conquer” approach.

It breaks the list in half, sorts the halves, and then merges the sorted halves.

It can do this recursively until a list has fewer than two elements, in which case it’s already sorted!
We can start by figuring out how to split a list into equal halves.

(define split-acc
 (lambda (lst left right)
 (cond
 ;; Base case 1: LST is empty
 ;; Create a two-element list whose elements are
 ;; LEFT and RIGHT.
 ((null? lst)
 (list left right))
 ;; Base case 2: LST has one element
 ;; Arbitrarily let RIGHT accumulate the one element
 ((null? (rest lst))
 (list left
 (cons (first lst) right)))
 ;; Recursive Case: LST has at least two elements
 ;; Put one on each accumulator.
 (else
 (split-acc (rest (rest lst))
 (cons (first lst) left)
 (cons (second lst) right))))))

Now we can consider how we merge two lists that are already sorted.
Given split and merge, writing the main merge-sort function isn’t too difficult!

We split the input when it has more than one element, recursively sorting the halves and then merging them.
> (define data (random-nums 10000 100000))
> (time (insertion-sort data) #t)
cpu time: 4816 real time: 4871 gc time: 446 #t
> (time (merge-sort data) #t)
cpu time: 58 real time: 59 gc time: 11 #t

That's a lot quicker!

The time to sort any list will increase as the list gets longer, but it grows quicker for insertion sort than for merge sort.

While insertion sort was $O(n^2)$, merge sort is only $O(n \log n)$

The study of execution time is called *algorithm analysis*, and the theoretical bound for a given problem is the subject of *complexity theory*.

Acknowledgments

This lecture incorporates material from:
Luke Hunsberger
Jennifer Walter