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Chapter 1

Introduction

Most kinds of communication are based on some kind of language, whether written, spoken, drawn or signed. To
be used successfully, the syntax and semantics of a language must be (explicitly or implicitly) understood.

• The syntax rules of a language specify the legal words, expressions, statements or sentences of that language.

• The semantic rules of a language specify what the legal words, expressions, statements or sentences mean.

For example, the syntax rules of the English language tell us that person, tall, told, the, a, me and joke are legal
words, and that “The tall person told me a joke” is a legal sentence, whereas pkrs, shrel and fdadfa are not legal
words, and “Person tall told a me the” is not a legal sentence. The semantic rules tell us what each of the words
mean (e.g., what objects the nouns denote and what processes the verbs convey), as well as what the entire sentence
means (e.g., that a particular tall person told me a joke). For another example, the syntax rules of French tell us
that je, vais, au, tableau and noir are legal words, and that “Je vais au tableau noir” is a legal sentence; and the
semantic rules tell us that this sentence means that I am going to the blackboard.

Just as people use so-called natural languages (e.g., English or French) to communicate with one another,
people use programming languages to communicate with computers. Over the years, many programming lan-
guages have been introduced, having names such as Java, Scheme, Python, C, C++, Fortran, Lisp, Haskell, Basic,
Algol, Javascript, and many others. Like any natural language, each programming language has an associated set
of syntax rules that specify the legal expressions (or statements or sentences or programs) that can be used in that
language, and a set of semantic rules that specify what the legal expressions mean.

? The meaning of a computer program includes the data denoted by expressions, the computations to be
performed on that data, and any auxiliary actions to be done (e.g., printing information on the computer
screen or changing the value of a variable stored in the computer’s memory).

For most computer programming languages, the constituents of the language, whether they are called expressions,
statements or entire programs, usually comprise sequences of typewritten characters. For example, the following
character sequences are legal building blocks of a Java program:

• int x = 5;

• for (int i=0; i < 5; i++) System.out.println(i);

• public class Sample { }

And the following character sequences are legal building blocks of a Scheme program:

• (define x 5)

• (+ 2 3)

• (printf "Hi there...")

1
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The semantic rules of Java stipulate that the legal statement, int x = 5;, represents an instruction to the
computer to create space for a variable named x whose value will, at least initially, be the integer five. Similarly,
the semantic rules of Scheme stipulate that the legal expression, (define x 5), when evaluated, should cause
the computer to create a new variable named x whose value will be the integer five.

Although people can effectively communicate with one another using a natural language based on an informal,
imprecise, intuitive understanding of its syntax and semantics, trying to program a computer based on an informal,
imprecise, intuitive understanding of the syntax and semantics of a given programming language typically leads
to trouble. Therefore, it is important to be explicit about the syntax and semantics of the programming language
being used.

? Indeed, while programming, it is extremely important to have an accurate mental model of the computations
you are effectively asking the computer to perform.

To enable us to enter the world of programming as quickly and painlessly as possible, it is helpful to use a
programming language whose rules of syntax and semantics are relatively simple. Scheme is just such a language.

? Although Scheme has a relatively simple computational model (i.e., syntax and semantics), it is as compu-
tationally powerful as any programming language.

In contrast, the Java programming language has a much more complicated set of syntax rules, and a correspond-
ingly complicated computational model—without any theoretical increase in computational power. Therefore, in
this class, we begin with Scheme.

? The concepts you learn in this class will be helpful to you when learning any other programming language
in the future.

In summary, to be effective, programmers need to have an accurate mental model of the operation of whatever
computer they are programming. The complexity of their mental model depends in large part on the kind of
programming language they are using. One of the significant advantages of the Scheme programming language is
that it is based on a fairly simple computational model. Scheme’s computational model is based on the Lambda
Calculus invented by the mathematician Alonzo Church in the 1930s, well before the advent of modern computers.
Internalizing Scheme’s model of computation will make you an effective Scheme programmer in no time!

Functions
Scheme is an example of a functional programming language. The main thing that you, as a Scheme programmer,
will do is design functions for solving problems. For our purposes, a function is something that takes zero or more
inputs, and generates a single output, as illustrated on the lefthand side of Fig. 1.1. For example, you might define
a Scheme function whose input is a scoresheet for some game, and whose output is the sum of the scores on that
scoresheet.

function

Input(s) −→ −→ Output

Side Effects

function

Input(s) −→ −→ Output

Side Effects

Figure 1.1: A function with no side effects (left) vs. a function with side effects (right)
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In certain cases, we may also consider functions that generate side effects, as illustrated on the righthand side
of Fig. 1.1. An example of a harmless, but very useful side effect is that of causing information to be displayed
onscreen. For example, the above-mentioned function might not only compute the sum of the scores on a given
scoresheet, but also have the side effect of displaying the contents of that scoresheet on a computer screen.

? Functions that have either no side effects or only harmless side effects are called non-destructive.

As you will discover in Part I of this book (Non-Destructive Programming in Scheme) a wide variety of extremely
useful computations can be performed by non-destructive functions. Furthermore, non-destructive functions tend
to be very easy to write and debug (i.e., to find errors and fix them).

Nonetheless, as Part II (Destructive Programming in Scheme) reveals, there are also many areas where destruc-
tive functions (i.e., functions having destructive side effects) can be extremely useful. The most basic example of
a destructive side effect is one that modifies the value assigned to a variable or to a slot within a data structure. For
example, the above-mentioned function might not only compute the sum of the scores on the scoresheet, but also
destructively modify the scoresheet by entering a new score into one of its slots. Although this kind of side effect
may sound harmless, it can greatly complicate the task of writing and debugging functions. (For example, does
the computed sum include the newly entered score?) Therefore, when we encounter destructive functions, starting
with Chapter ??, we shall do so very carefully.

A Note about the Approach
This textbook takes a very careful, bottom-up approach to the computational model of Scheme. Each of the first
several chapters introduces a small portion of the computational model, highlighting the syntax and semantics of
each construct that is presented. Although this approach can seem slow at first, it leads to faster results in the long
run because it helps to avoid many common pitfalls that can frustrate programmers who are relying on a casual
understanding of the computational model being used.
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Part I

Non-Destructive Programming in Scheme

5





Chapter 2

Scheme Expressions vs. Scheme Data

In our daily lives, we frequently use character sequences to denote both concrete and abstract data. For example,
the character sequence dog can be used to denote a dog; and the character sequence 34 can be used to denote
the number thirty-four. Of course, this book itself largely consists of a bunch of character sequences that denote
all sorts of things. Well, in its physical form, it is a bunch of pages that are covered with ink marks. The ink
marks represent characters that, in turn, form sequences of characters that denote other things. The point is: we
are so used to using character sequences to denote (or represent) things that we tend to take it for granted. When
programming computers, it is important to have a solid understanding of the legal character sequences, what they
mean, and what computations they may lead to.

Any program in Scheme is a sequence of (usually typewritten) characters. The syntax rules of Scheme tell us
which character sequences constitute legal Scheme programs.

? The building blocks of a Scheme program are character sequences called expressions.

In other words, each Scheme program consists of one or more Scheme expressions. For example, as we’ll soon
discover, 3, #t and () are legal expressions in Scheme.

? In Scheme, each legal expression denotes a datum (i.e., a piece of data).

? The semantics of Scheme tells us which datum each legal expression denotes.

For example, in Scheme, the legal expressions 3, #t and () respectively denote the following pieces of data: the
number three, the truth value true, and the empty list.

As illustrated in Fig. 2.1, the universe of Scheme data is partitioned into data types having names such as:
numbers, booleans (i.e., truth values), symbols and functions, among many others.

? Each datum belongs to one and only one data type.

For example, a Scheme datum might be a number or a symbol, but cannot be both. The rest of this chapter
addresses expressions that denote some of the most commonly used types of Scheme data, beginning with primitive
data expressions.

2.1 Primitive Data Expressions
A primitive datum is one that is atomic, in the sense that it is not composed of smaller parts that a Scheme program
can access. Examples of primitive data in Scheme include numbers, booleans and the empty list. A primitive data
expression is an expression that denotes a primitive datum.

2.1.1 Numbers
According to the syntax rules of Scheme, character sequences such as 3, -44, 34.9 and 85/6 are legal Scheme
expressions. According to the semantics of Scheme, these expressions respectively denote the numbers three,

7
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Numbers

Booleans
Symbols

Null
(empty list)

Lists
Non−empty

Other

Data Types!

Functions

Vectors

Characters

Strings

Figure 2.1: The universe of Scheme data, partitioned according to data type

negative forty-four, thirty-four point nine and eighty-five sixths. Each of these numbers is an example of a primitive
Scheme datum.

For the purposes of this course, it is not necessary to explicitly write down the full set of syntax rules for
numerical expressions in Scheme. We will only need the most basic sorts of numerical expressions in Scheme,
most of whose rules are undoubtedly already familiar to you through whatever math classes you may have taken
in years gone by.

Character sequences vs. the data they denote. It is extremely important to distinguish character sequences
(e.g., 3) from the data they denote (e.g., the number three). To highlight this distinction, we use the following
notation:

Character Sequence −→ Datum

For example, we can use this notation to describe the data denoted by the previously seen character sequences:

3 −→ the number three

-44 −→ the number negative forty-four

85/6 −→ the number eighty-five sixths

In some cases, multiple Scheme expressions denote the same datum. For example, each of the following character
sequences denotes the number zero in Scheme: 0, 000 and 000000, as indicated below.

0 −→ the number zero

000 −→ the number zero

000000 −→ the number zero

As programmers, we only get to type the numerical expressions (i.e., character sequences); however, behind the
scenes, the computer is working with the numbers (i.e., Scheme data) denoted by those expressions.

2.1.2 Booleans
According to the syntax rules of Scheme, the character sequences, #t and #f, are legal Scheme expressions.
According to the semantics of Scheme, these expressions respectively denote the truth values true and false, as
illustrated below:



Introduction to Computer Science via Scheme c© 2019 Luke Hunsberger Spring 2019 9

#t −→ the true truth value

#f −→ the false truth value

Again, keep in mind the difference between the character sequences and the truth values they denote. The boolean
data type consists solely of these two truth values (i.e., pieces of data). As programmers, we type the character
sequences #t and #f; behind the scenes, the computer is working with the corresponding truth values.

2.1.3 The Empty List (or Null)
According to the syntax rules of Scheme, the character sequence, (), is a legal Scheme expression. According to
the semantics of Scheme, it denotes the null datum, which is also called the empty list.

() −→ the empty list

(We’ll encounter non-empty lists later on.) The null data type includes only this one datum.

2.1.4 The Void Datum
Scheme includes a data type called void that contains only one datum, called the void datum. As will be seen later
on (e.g., in Section 5.5), the void datum is used to represent “no value”. For example, a printing function, whose
job is to display a bunch of textual information as a harmless side effect, will typically return the void datum as its
output value. (Recall that there is a sharp distinction in Scheme between the output value of a function and any
side effects it might have.)

? Although the void datum is a primitive datum, there is no corresponding primitive data expression that
denotes the void datum.

In other words, there is no Scheme expression that can be put into the box below to denote the void datum.

−→ the void datum

How, then, can we get our hands on the void datum should we ever want to? That’s an open question for now.

2.1.5 Symbols
Another kind of primitive data in Scheme is a symbol. Symbols are typically used as names for things in a Scheme
program. For example, each of the built-in functions in Scheme has a corresponding symbol that serves as its
name. More generally, symbols can be used as names for any kind of Scheme data. That is, symbols can be used
as variables in a Scheme program. For example, the symbol income might be used as a variable whose value is
some amount of money.

To provide programmers with a great degree of flexibility when dealing with symbols, the syntax rules for
symbol expressions in Scheme are very liberal. For example, miles-per-gallon, _LEGAL_SYMBOL_,
*Legal-Symbol* and !even@me? are all legal expressions in Scheme that denote symbols. Because they
are so flexible, it would be a bit tedious to explicitly write down all of the syntax rules for symbol expressions in
Scheme. Fortunately, it is not necessary. For our purposes, the following general guidelines will suffice:

• Any sequence of letters, whether lower-case, upper-case, or a mixture of the two, is a legal symbol expres-
sion in Scheme. Examples include: hello, goodBye and gasMileage.

• Any character sequence consisting of letters and punctuation characters such as hyphens, asterisks, question
marks and exclamation points is a legal symbol expression in Scheme. Examples include: new-world,
gas-mileage, *CONSTANT*, _WIDTH_, roll-dice! and symbol?.

• Commonly used one-character expressions, such as *, +, - and /, also constitute legal symbol expressions
in Scheme.

The semantics of Scheme specifies the datum denoted by each legal symbol expression. For example, the legal
expression, hello, denotes the symbol hello; and the legal expression, *, denotes the asterisk symbol.
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hello −→ the symbol hello

* −→ the asterisk symbol

Again, it is important to keep in mind the difference between the typewritten character sequences (e.g., hello
and bye-bye) and the symbols (i.e., the Scheme data) that they denote (e.g., the symbol hello, and the symbol
bye-bye). This distinction is hard to write down because we use symbols to denote character sequences, and we
also use symbols to denote the symbols denoted by character sequences.) In addition, it is important to remember
that symbols are primitive data; they do not have any parts that can be accessed by a Scheme program. For
example, the symbol denoted by the expression hello does not have any parts; it is indivisible. It may help to
think of it as a billiard ball with hello written on it.

2.2 String Expressions
This section introduces the string data type in Scheme. Unlike all of the data types discussed above, strings are
non-primitive in Scheme: each string has parts, called characters, that can be accessed by a Scheme program.
However, we will not be focusing on the non-primitive nature of strings in this book. In other words, although
strings are non-primitive in Scheme, we will, in what follows, treat them as though they were primitive. Why,
then, do we introduce them here? Because, as will be seen, Scheme’s very useful printing functions use strings!

? The string data type will not be a focus of this book (i.e., it will not play an important role in our under-
standing of Scheme’s computational model); instead, we will only use strings when we want our Scheme
programs to print out useful information.

Syntactically, a string expression is a sequence of characters delimited by double-quotes. For example, "hi"
and "Howdy!" are legal string expressions in Scheme. The semantics of Scheme stipluates that each string
expression denotes a string datum (i.e., a non-primitive sequence of characters), as illustrated below.

"hi" −→ the string “hi”

"Howdy!" −→ the string “Howdy!”

2.3 Summary
This chapter introduced the syntax and semantics for a variety of data types in Scheme, including: numbers,
booleans, the empty list, the void datum, symbols, and strings. Examples of legal expressions that denote these
kinds of data are given below.

Numbers: 342, -81, 34/9, 21.832, etc.

Booleans: #t, #f

The empty list: ()

Symbols: x, miles-per-gallon, dollarsPerGallon, *, +, /, etc.

Strings: "hi", "Howdy!"

For each legal expression (i.e., piece of syntax), the semantics specifies the datum denoted by that expression.
This book uses a single arrow (−→) to represent denotation. For example, the fact that the character sequence 34
denotes the number thirty-four is represented by: 34 −→ the number thirty-four.

Although there are expressions that denote data belonging to most of the data types listed above, there is no
legal expression in Scheme that denotes the void datum.

Of all the data types addressed above, only strings are non-primitive in Scheme; however, investigating the
non-primitive aspects of strings shall not be a focus of this book. But have no fear: Chapter 6 will introduce
non-empty lists, a non-primitive type of data that plays a central role in Scheme’s computational model.



Chapter 3

Evaluating Scheme Data

We have seen that a variety of character sequences (e.g., 34, xyz, () and #t) constitute legal expressions accord-
ing to the syntax rules of Scheme. In addition, we’ve seen that each legal expression denotes a piece of data of a
particular kind. For example, 34 denotes the number thirty-four, and xyz denotes the symbol xyz. The character
sequences are expressions; the data they denote belong to the universe of Scheme data. As programmers, we type
character sequences; the computer deals with the corresponding Scheme data.

This chapter addresses the one thing that a Scheme computer does—namely, it evaluates Scheme data. The
following observations are important to keep in mind:

? Evaluation is done by the computer, not the programmer.

? Evaluation involves Scheme data, not expressions/character sequences.

Because evaluation is the one-and-only thing that a Scheme computer does, it is important to carefully describe it.
The good news is that the process of evaluation can be described fairly succinctly for many kinds of Scheme data.

We begin by noting that evaluation is a function—in the mathematical sense (i.e., something that takes zero or
more inputs, and generates a single output). In particular, the evaluation function takes one Scheme datum as its
input, and generates another Scheme datum as its output, as illustrated in Fig. 3.1.

The result of applying the evaluation function depends on the type of data that it is applied to. Thus, in what
follows, we describe what the evaluation function does for each kind of data we have seen so far.

? In most cases, the application of the evaluation function to a Scheme datum does not directly gener-
ate any side effects. However, there are some important exceptions that shall be highlighted as they are
encountered—in Chapters 7, ?? and ??.

3.1 Evaluating Numbers, Booleans, the Empty List, the void Datum, and
Strings

The evaluation function acts like the identity function when applied to numbers, booleans, the empty list, the void
datum, or strings, as illustrated in Fig. 3.2. Since drawing the kinds of black boxes shown in Figs. 3.1 and 3.2
takes up so much space, from now on we’ll use a simpler, text-based notation to represent the application of the
evaluation function to some datum, as illustrated below.

Input Datum =⇒ Output Datum

The double arrow (=⇒) is reserved solely for representing the application of the evaluation function to some
Scheme datum (called the input) to generate some, possibly quite different Scheme datum (called the output).

? Instead of saying that the evaluation function generates the output datum when applied to a certain input
datum, we may say that the output datum is the result of evaluating the input datum (or that the input
datum evaluates to the output datum). Keep in mind that when we say such things, we are talking about the
application of the one-and-only evaluation function.

11
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Evaluation Function

Input Datum −→ −→ Output Datum

Figure 3.1: The evaluation function in Scheme

Eval. Func.

number two −→ −→ number two

Eval. Func.

boolean true −→ −→ boolean true

Figure 3.2: Sample evaluations in Scheme

Here are some more examples illustrating the trivial behavior of the evaluation function when applied to numbers,
booleans, the empty list, the void datum, or strings:

the number zero =⇒ the number zero

the boolean true =⇒ the boolean true

the empty list =⇒ the empty list

the void datum =⇒ the void datum

the string “hi there” =⇒ the string “hi there”

Of course, if the evaluation function acted like the identity function for every kind of input, then it would not be
very interesting. (It would just be the identity function.) The following section addresses one of the important
cases where the evaluation function does something a little more interesting.

3.2 Evaluating Symbols
In Scheme, symbols are frequently used as variables. In math, variables frequently have values associated with
them. For example, the variable x may have the value 3. So it is with Scheme. For this reason, the evaluation
of symbols is different from the evaluation of numbers, booleans, the empty list, the void datum, or strings. In
particular, symbols typically do not evaluate to themselves; instead, they evaluate to the value associated with
them. (Keep reading!)

Environments in Scheme. In Scheme, symbols are evaluated with respect to an environment. For example, the
symbol x might evaluate to the number three in one environment, but to the boolean false in another environment.
Although the word environment may sound mysterious, an environment in Scheme is really nothing more than
a table of entries, where each entry pairs a symbol s with its value v. For example, the sample environment
illustrated in Fig. 3.3 pairs the symbol num with the value three, and the symbol xyz with the value two.
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Symbol Value
num number three
xyz number two

boolie boolean true
stringy string “hello”

Figure 3.3: A sample environment

? The value of a symbol s with respect to some environment is simply whatever datum appears in the entry
for the symbol s in that environment. (If there is no such entry, then the value for s with respect to that
environment is undefined.)

? The value associated with a symbol in an environment can be a Scheme datum of any type.

For example, the symbol num evaluates to the number three with respect to the environment shown in Fig. 3.3.
Similarly, the symbol xyz evaluates to the number two in that environment; and the symbol boolie evaluates to the
boolean true.

For another example, if an environment E0 contains an entry that pairs the symbol xyz with the number two,
while another environment E1 contains an entry that pairs the symbol xyz with the boolean false, then evaluating
xyz with respect to the environment E0 will yield the number two, while evaluating xyz with respect to E1 will yield
the boolean false.

Okay, that’s true enough. However, while there can be lots of different environments in Scheme, the focus
of attention for the next several chapters shall be on the most important environment in Scheme: the Global
Environment. The Global Environment is the environment that is used by default.

? When we are talking about evaluating some Scheme datum, unless we explicitly say something to the
contrary, we shall assume that we are talking about evaluating that datum with respect to the Global Envi-
ronment.

It may help to think of an environment as a room that has a table of symbol/value pairs tacked to one of its
walls. When a symbol needs to be evaluated in that room/environment, the evaluation function simply fetches the
symbol’s value from the relevant entry in that table.

Evaluating symbols in the Global Environment. If the Global Environment contains an entry that pairs the
symbol xyz with the number two, then the symbol xyz will evaluate to the number two:

the symbol xyz =⇒ the number two

Since the value that is paired with a symbol in the Global Environment can be a Scheme datum of any type,
it might be that the boolean true is the value for the symbol pq. Similarly, the empty list might be the value
associated with the symbol my-empty-list, as illustrated below.

the symbol pq =⇒ the boolean true

the symbol my-empty-list =⇒ the empty list

Symbols can even evaluate to other symbols. For example, if the Global Environment contains an entry associating
the symbol bar with the symbol foo (where bar corresponds to the value), then the following would hold:

the symbol foo =⇒ the symbol bar

On the other hand, if a symbol does not have a corresponding entry in the Global Environment, then evaluating
that symbol with respect to the Global Environment is undefined. A little later on, in Chapter 7, we’ll see how to
insert entries into the Global Environment, thereby enabling us to create and use variables of our own.

? An environment is a context within which Scheme data get evaluated. However, an environment is not a
Scheme datum. Thus, environments in Scheme are not available for direct inspection.
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3.3 Summary
At the core of the Scheme computational model is the process of evaluation. Evaluation is a function that takes a
Scheme datum as its input and generates a (possibly different) Scheme datum as its output. For each type of data,
the semantics of Scheme specifies how instances of that data type are evaluated (i.e., what output is produced).
Numbers, booleans, the empty list, the void datum, and strings all evaluate to themselves (i.e., the evaluation
function works like the identity function for instances of those data types). However, a symbol is evaluated
differently: by looking for a corresponding entry in the relevant environment. The default environment is called
the Global Environment.

This book uses the double arrow (=⇒) to represent the process of evaluation. For example, if the Global
Environment contains an entry associating the symbol x with the number eighty-six, this fact can be represented
as follows:

the symbol x =⇒ the number eighty-six

It is important to remember that:

(1) each expression—which is a character sequence—denotes a Scheme datum; and

(2) each Scheme datum evaluates to a (possibly different) Scheme datum.

For example:

x −→ the symbol x =⇒ the number eighty-six



Chapter 4

Introduction to DrScheme

This chapter introduces the piece of software known as DrScheme.1 This software simulates the operation of a
computer that understands the Scheme programming language. It also enables us to interact with that simulated
computer. In effect, we use DrScheme as an intermediary between us and that simulated computer. We interact
with the simulated computer as follows:

• We type some character sequence into DrScheme’s Interactions Window (i.e., the lower window-pane in
DrScheme’s window).

• DrScheme takes the datum denoted by that character sequence and feeds it into the evaluation function (i.e.,
DrScheme evaluates that datum), generating some output datum.

• DrScheme displays some typewritten text in the Interactions Window describing the output datum to us.

This process is illustrated in Fig. 4.1, where everything in the shaded box is carried out behind the scenes by
DrScheme. Notice that our interaction with DrScheme is through the character sequences (i.e., expressions) we
type into the Interactions Window; and the character sequences that DrScheme displays to us in response. We
never get to “touch” the Scheme data denoted by our character sequences. (What would it mean to touch a number
anyway?) For this reason, it is extremely important that we maintain an accurate mental model of what’s going on
in that simulated world. In other words, we need to have an accurate understanding of Scheme’s computational
model.

More formally, when we type a sequence of characters, Cin, into the Interactions Window, and then hit the
Return (or Enter) key, DrScheme does the following:

(1) It figures out which Scheme datum, Din, is denoted by the character sequence Cin;

(2) It feeds that Scheme datum as input to the evaluation function, which generates an output datum, Dout

(i.e., Din evaluates to Dout).

(3) Finally, it displays some typewritten text, Cout, in the Interactions Window that describes the output
datum, Dout.

This process is illustrated below.

DoutDin =⇒

Cin Cout

1The DrScheme software is freely available from drscheme.org. For the purposes of this book, DrScheme and DrRacket, which is
freely available from drracket.org, may be considered to be equivalent. Thus, DrRacket may be used in place of DrScheme, if desired.

15
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Eval Func

DrScheme

Character sequence

Input Datum

Output Datum

Report result
(character sequence)

Figure 4.1: A programmer’s interaction with DrScheme

Keep in mind that we only see the character sequences, Cin and Cout; we do not see the Scheme data, Din and
Dout. (What does a Scheme datum look like anyway?) We can more succinctly describe this process as follows:

Cin −→ [ Din =⇒ Dout ] −→ Cout

where the single arrow (−→) represents the translation from character sequences to the denoted Scheme data
(in either direction), the double arrow (=⇒) represents the application of the evaluation function, and the square
brackets indicate that we don’t get to see the Scheme data, Din and Dout.

? When entering expressions into the Interactions Window, the datum Din is evaluated with respect to the
Global Environment.

4.1 Entering Expressions into the Interactions Window
We can use DrScheme to confirm some of the things discussed in previous chapters. In particular, we can enter
character sequences (i.e., expressions) into the Interactions Window and then examine the results reported by
DrScheme. In each case, we only get to see the character sequences we type in, and those reported back by
DrScheme; we do not get to see the Scheme data that is manipulated by the Scheme computer.

Example 4.1.1: DrScheme’s Interactions Window

The following interactions demonstrate that numbers, booleans, the empty list and strings all evaluate to
themselves:

> 3
3
> #t
#t
> ()
()
> "Howdy!"
"Howdy!"

In the Interactions Window, DrScheme uses the > character to prompt the user for input. Everything
following the > character is typed by the programmer. The text on the next line is that generated by
DrScheme in response. Thus, the above example shows four separate interactions.
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In these simple examples, the character sequence displayed by DrScheme happens to be the same as that
typed by the programmer. However, recall that, behind the scenes, DrScheme is doing quite a bit more than these
examples suggest. In particular:

3 −→ [ the number three =⇒ the number three ] −→ 3

#t −→ [ the boolean true =⇒ the boolean true ] −→ #t

() −→ [ the empty list =⇒ the empty list ] −→ ()

"Howdy!" −→ [ the string “Howdy!” =⇒ the string “Howdy!” ] −→ "Howdy!"

Example 4.1.2

The following interactions demonstrate that several different character sequences can be used to denote
the number zero:

> 0
0
> 000
0
> 000000
0

As this example illustrates, DrScheme need not use the same character sequence as the one we entered
when reporting back that the result of evaluating the number zero is the number zero. Instead, DrScheme
chooses the most compact character sequence.

? For convenience, we may say that DrScheme is evaluating the expressions we type into the Interactions
Window, when of course we mean that DrScheme is evaluating the data denoted by the expressions we type
into the Interactions Window.

4.2 DrScheme’s Run Button
Although manually typing individual expressions into the Interactions Window and viewing DrScheme’s responses
can be quite useful, it is often desirable to ask DrScheme to evaluate a large number of Scheme expressions. (Re-
read the above note about “evaluating expressions”.) To avoid endless typing and re-typing (e.g., when fixing
errors), the upper window-pane of DrScheme, called the Definitions Window, can be used to edit—and, if desired,
save—any number of Scheme expressions. Afterward, clicking the Run button in DrScheme’s toolbar causes
DrScheme to evaluate each of the expressions currently residing in the Definitions Window, one after the other, as
if we had manually typed them into the Interactions Window, as illustrated in Fig. 4.2.

? When using the Run button, DrScheme only reports the results of evaluating the expressions from the Defi-
nitions Window.

More generally, the Definitions Window can be used to hold the contents of an entire Scheme program. In such
cases, clicking the Run button would cause all of the expressions in that program to be evaluated, one implication
being that any functions defined in that program could then be used.

4.3 Summary
The DrScheme software simulates a Scheme computer that we, as programmers, can interact with. We type
expressions (i.e., character sequences) into the Interactions Window, and DrScheme responds by displaying some
(possibly different) character sequence. However, something very important happens in between:



18 Introduction to Computer Science via Scheme c© 2019 Luke Hunsberger Spring 2019

Figure 4.2: Using the Run button to evaluate (the data denoted by) multiple expressions

(1) the input character sequence Cin denotes some Scheme datum Din;

(2) DrScheme evaluates Din, yielding some datum Dout; and

(3) DrScheme displays a character sequence Cout that describes Dout to us.

This process is concisely summarized by:

Cin −→ [ Din =⇒ Dout ] −→ Cout

where the stuff between the square brackets is invisible to us. Since such important computations are happening
behind the scenes, it is important that we, as programmers, have an accurate mental model of what Scheme is
doing.

DrScheme’s Definitions Window can be used to hold multiple expressions. Clicking the Run button causes
each of those expressions to be evaluated in turn, with the results reported in the Interactions Window.



Chapter 5

Built-In Functions

For convenience, Scheme includes a variety of built-in functions. Examples include the addition function, the
multiplication function, and a printing function, among many others.

? Each built-in function is a Scheme datum that is primitive, like numbers and booleans, in the sense that they
don’t have any parts that a Scheme program can access. Thus, a built-in function is a black box to us.

If you are wondering what character sequences in Scheme denote built-in functions, the answer may surprise you:

? There are no Scheme expressions that denote built-in Scheme functions.1

This surprising fact leads to another question: How can a Scheme programmer make use of built-in functions if
none of them are denoted by any Scheme expressions? The answer is indicated by the following observation.

? Although the Input Datum shown in Fig. 4.1 can never be a function, the Output Datum can be.

In particular, for each built-in function, there is an entry in the Global Environment that associates a particular
symbol with that function. Therefore, evaluating that symbol generates the corresponding function as an output
value. In other words, if the Input Datum from Fig. 4.1 is a symbol that serves as the name of a built-in function,
then the corresponding Output Datum will be that function. That is: we gain access to a built-in function by
evaluating the symbol that serves as its name.

The rest of this chapter introduces some of the most commonly used built-in functions.

5.1 Built-in Functions for Arithmetic

DrScheme provides a variety of built-in functions for doing basic arithmetic computations. For example, when
DrScheme is first started up, the Global Environment is automatically populated with entries that ensure that each
of the following evaluations holds:

the symbol + =⇒ the addition function

the symbol - =⇒ the subtraction function

the symbol * =⇒ the multiplication function

the symbol / =⇒ the division function

Thus, a Scheme programmer can refer to these built-in functions indirectly, by asking DrScheme to evaluate the
corresponding symbols.

1Indeed, there are no Scheme expressions that denote any kind of function, whether built-in or not!
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Example 5.1.1: Accessing the built-in arithmetic functions

That the abovementioned entries do indeed exist in the Global Environment can be confirmed by DrScheme,
as illustrated below:a

> +
#<procedure:+>
> -
#<procedure:->
> *
#<procedure:*>
> /
#<procedure:/>

The behind-the-scenes work involved in these interactions can be summarized as follows:

+ −→ [ the + symbol =⇒ the addition function ] −→ #<procedure:+>

- −→ [ the - symbol =⇒ the subtraction function ] −→ #<procedure:->

* −→ [ the * symbol =⇒ the multiplication function ] −→ #<procedure:*>

/ −→ [ the / symbol =⇒ the division function ] −→ #<procedure:/>

aThis text uses the terms, function and procedure, interchangeably; however, the term function seems better suited given that
Scheme is typically referred to as a functional programming language.

Notice that the character sequences reported by DrScheme need not be legal pieces of Scheme syntax. (Recall
that there is no legal piece of Scheme syntax that denotes a primitive function.) Instead, a character sequence
such as #<procedure:+> is DrScheme’s best attempt to describe to us the fact that the output datum is a
function—namely, the function associated with the + symbol.

? Although we are required to type legal Scheme expressions into the Interactions Window, DrScheme is
allowed to write whatever it wants when it seeks to describe the results of an evaluation.

5.2 Contracts

To be able to make proper use of a built-in function, it is important to know its name, the kinds of inputs it can be
applied to, the order in which it expects its inputs, some sort of description of the output it is supposed to generate
and, if applicable, any side effects it might have. This kind of information is typically gathered together into a
contract, as illustrated by the following examples.

Example 5.2.1: Contracts for some built-in functions

Here is a contract for the built-in addition function:

Name: +
Inputs: x1, x2, . . . , xn; zero or more numerical inputs
Output: The sum, x1 + x2 + . . .+ xn
Side Effects: None

Notice that the contract describes what the output value should be, but it does not go into the underlying
details about how that output value is actually computed. Similar remarks apply to the following contract
for the built-in subtraction function:
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Name: -
Inputs: x1, x2, . . . , xn; one or more numerical inputs
Output: If n = 1 (i.e., if there is only one input), then the output is −x1

otherwise, the output is the value, x1 − x2 − x3 . . .− xn
Side Effects: None

For example, applying the subtraction function to the two inputs, 10 and 3, yields the output 7; but applying
it to the single input 5 yields the output −5.

? Since most functions encountered in this course will not have any side effects, we shall follow the convention
that if a contract does not mention side effects, then the function can be assumed to not have any.

The rest of this chapter presents several other commonly used built-in functions. The next chapter will show how
to apply functions to inputs (i.e., make them do something). Later chapters will show how to create functions of
our own design and give them names by inserting appropriate entries into the Global Environment.

5.3 Built-in Functions for Integer Arithmetic
You may recall the process of doing integer division in grade school. For example, you may have been shown that
17 divided by 3 yields an answer of 5 with remainder 2. (The answer is often called the quotient—but I always
had trouble remembering that.) DrScheme provides two built-in functions, called quotient and remainder,
that together can be used to carry out integer division: quotient provides the answer; remainder provides
the remainder. The contracts for these functions are given below:

Name: quotient
Inputs: numer, denom, two integers
Output: The (integer) answer that results from dividing numer by denom,

ignoring any remainder.

Name: remainder
Inputs: numer, denom, two integers
Output: The (integer) remainder left over from dividing numer by denom.

Scheme also includes a built-in function, called integer?, for checking whether a given datum is an integer.

Name: integer?
Input: datum, anything
Output: #t if datum is an integer; otherwise, #f

5.4 The Built-in eval Function
The evaluation function that is so important to the computational model of Scheme is itself provided as a built-in
function. In particular, the Global Environment contains an entry that associates the eval symbol with the built-in
evaluation function, as demonstrated by the following interaction:

> eval
#<procedure:eval>

Since it is a primitive, built-in function, we don’t get to see how the evaluation function operates; however, we
have started to discover what the evaluation function does—at least for some kinds of Scheme data. Subsequent
chapters will address what the evaluation function does for other kinds of Scheme data. Once we understand what
the evaluation function does for each kind of Scheme data, we could think about writing down a contract for it.

? Like numbers, booleans, the empty list, the void datum, and strings, functions evaluate to themselves.
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In other words, if you feed a Scheme function as input to the evaluation function, the output will be that same
function. For example, the addition function evaluates to the addition function; the multiplication function eval-
uates to the multiplication function; and the evaluation function applied to itself yields itself (!), as summarized
below.

the addition function =⇒ the addition function

the multiplication function =⇒ the multiplication function

the evaluation function =⇒ the evaluation function

A demonstration of functions evaluating to themselves will be given in the next chapter.

5.5 The Built-in Functions printf and void

Recall from Section 2.1.4 that Scheme includes a data type called void whose only datum is also called void. The
purpose of the void datum is to represent “no value”. For example, a function whose main job is to do a bunch of
side-effect printing might return the void datum as its output value, representing “no output value”. In such cases,
DrScheme would display all of the side-effect printing, but would not display anything for the void output value.
(Since void represents “no value”, DrScheme does not feel compelled to display anything for void.)

? If a function’s output is void, then we may say that the function does not generate any output value.

The built-in functions, printf and void, introduced below, are examples of functions whose output value is
invariably the void datum.

5.5.1 The printf Function

Scheme provides a built-in printf function that can be used to display information in the Interactions Window.

? The display of textual information by the printf function is an example of a harmless side effect.

? The output value generated by the printf function is always the void datum.

Although the printf function has additional capabilities that won’t be explored until Chapter 10, the contract
for the simplest use of the printf function, given below, will suffice for now.

Name: printf
Input: str, a string
Output: the void datum (i.e., “no value”)
Side Effect: displays the contents of the string str in the Interactions Window

(without the double-quotes)

5.5.2 The void Function

Recall from Section 5.5 that there is no legal Scheme expression that we can type into the Interactions Window
that denotes the void datum. However, should you ever need to get your hands on the void datum, there is a built-in
function, called void, that does nothing but generate the void datum as its output. Here is its contract:

Name: void
Inputs: Any number of inputs
Output: the void datum
Side Effects: none
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5.6 Summary
There are no Scheme expressions that denote functions! However, that is not a problem because there are Scheme
expressions that denote Scheme data that evaluate to functions. (Denotation vs. evaluation.) In particular, the
Global Environment comes pre-populated with entries that associate certain symbols with various built-in func-
tions. For example, the + symbol is associated with the built-in addition function; and the * symbol is associated
with the built-in multiplication function. As a result, we can effectively refer to the built-in functions by name, as
illustrated below:

+ −→ [ the + symbol =⇒ the built-in addition function ] −→ #<procedure:+>

Note that DrScheme is not required to follow the rules of Scheme syntax when displaying information in the
Interactions Window.

So that we may use the built-in functions properly, each function has an associated contract that specifies its
name (a symbol), its inputs (how many and their types), its output, and any side effects it might have. The infor-
mation found in the contracts for the built-in functions is available online, for example, using the HelpDesk feature
of the DrScheme program. Later on, when we learn how to specify functions of our own design (cf. Chapter 9),
we will include a contract for each new function.

The evaluation function itself is provided as a built-in function—it is the value associated with the eval
symbol.

Built-In Functions Introduced in this Chapter

Basic Arithmetic: +, -, *, /

Integer Arithmetic: quotient, remainder, integer?

Evaluation Function: eval

Basic Printing: printf

Generating the void datum: void
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Chapter 6

Non-Empty Lists

Previously, we have seen many examples of primitive data: numbers, booleans, the empty list, the void datum,
symbols, and primitive functions. Recall that each primitive datum is atomic in the sense that it has no parts
that we, as Scheme programmers, can access. In contrast, strings are non-primitive data: they have parts, called
characters, that are accessible to Scheme programmers. However, instead of exploring the non-primitive nature of
strings, this chapter explores another kind of non-primitive data: non-empty lists.

? As will soon be revealed, non-empty lists play a very important role in Scheme’s computational model.

A non-empty list is an ordered sequence of Scheme data. For example, a list might contain items such as the
symbol +, the number three, and the boolean true. Other examples of non-empty lists are given below:

• a list containing the number three and the number four

• a list containing the + symbol, the number three, and the number four

• a list containing: (1) the symbol eval, and (2) a subsidiary list containing the + symbol, the number three,
and the number four

The last example illustrates that a list can contain elements that are themselves lists.

? A non-empty list is, by itself, a Scheme datum. It is a Scheme datum that happens to contain other Scheme
data as its elements.

6.1 The Syntax and Semantics for Non-Empty Lists
Since a non-empty list is a Scheme datum, a natural question arises: what kinds of character sequences can the
programmer use to denote non-empty lists (i.e., what are the syntax rules for non-empty lists)? We begin with
sample character sequences that the programmer can use to denote the Scheme lists described above:

(3 4) −→ a list containing the number three and the number four

(+ 3 4) −→ a list containing the + symbol, the number three, and the number four

(eval (+ 3 4)) −→ a list containing:

(1) the symbol eval, and
(2) a subsidiary list containing the + symbol, the number three, and the number four

As these examples illustrate, if E1, E2, . . . , En are legal Scheme expressions (i.e., character sequences), then
the character sequence

(E1 E2 . . . En)

is a legal character sequence. (That’s the syntax!) Furthermore, that character sequence denotes a list containing
the n items denoted by E1, E2, . . . , En. (That’s the semantics!) Thus, if
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E1 −→ D1

E2 −→ D2

. . .

En −→ Dn

(i.e., each Ei is a Scheme expression that denotes a Scheme datum, Di), then the character sequence

(E1 E2 . . . En)

is a legal character sequence that denotes a list D containing the n items D1, D2, . . . , Dn.
For example, the character sequences +, 3 and 4 are legal Scheme expressions that respectively denote the

+ symbol, the number three, and the number four. Thus, the character sequence, (+ 3 4), is a legal Scheme
expression that denotes a list containing the + symbol, the number three, and the number four. In this example, the
expressions E1, E2 and E3 are +, 3 and 4, respectively; and the Scheme data D1, D2 and D3 are the + symbol,
the number three, and the number four.

Since (+ 3 4) denotes a list, if we type this character sequence into the Interactions Window, the Input
Datum will be that list. (It may help to refer back to Fig. 4.1.) However, DrScheme will then evaluate that list—
because DrScheme always evaluates the Input Datum to generate the Output Datum. Therefore, we need to talk
about how non-empty lists are evaluated.

6.2 Evaluating Non-Empty Lists: the Default Rule
As already seen, the empty list evaluates to itself; however, the evaluation of a non-empty list is altogether different.
This section presents the Default Rule for evaluating non-empty lists. Exceptions to the Default Rule—the so-
called special forms—will be covered later on.

Example 6.2.1

We begin with some examples that confirm that something new is happening when DrScheme evaluates
non-empty lists.

> (+ 2 3)
5
> (* 3 4 5)
60
> (+ 2 (* 3 10))
32
> (+ 2 (* 3 (+ 4 8 6)))
56

In each of these examples, the expression entered by the programmer is a legal Scheme expression that
denotes a Scheme list. (You should convince yourself of this.) In addition, the evaluation of each list
appears to result in an arithmetic computation—in fact, the kind of arithmetic computations you’ve seen
in math classes over the years. In each case, the list is being evaluated according to the Default Rule.

Example 6.2.2

Consider the expression (+ 2 3), which denotes a list containing three items: the + symbol, the number
two, and the number three. The Default Rule for evaluating such lists has two steps. The first step is to
evaluate each item in the list. Now, the + symbol evaluates to the built-in addition function because the
Global Environment is guaranteed to contain an entry associating the + symbol with the addition function.
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The remaining items in the list are numbers; thus, they trivially evaluate to themselves. The results of the
first step are summarized below:

the + symbol =⇒ the addition function

the number two =⇒ the number two

the number three =⇒ the number three

Okay, so after evaluating all of the items in the list, we have the addition function and two numbers. The
second step in the Default Rule involves applying that function to the remaining items (i.e., feeding the
remaining items as input into that function), as illustrated below:

Addition Function

number two −→
number three −→ −→ number five

The resulting output datum is what we take to be the result of evaluating the original non-empty list!
Thus, the result of evaluating the list containing the + symbol, the number two, and the number three, is
(not surprisingly perhaps) the number five, which DrScheme reports in the Interactions Window using the
character sequence 5. Here’s a summary of this example:

(+ 2 3) −→ [ list containing + symbol, number two, number three =⇒ number five ] −→ 5

where the evaluation is explained by:

First Step of the Default Rule:

+ symbol =⇒ addition function

number two =⇒ number two

number three =⇒ number three

Second Step of the Default Rule:

addition function applied to two and three yields output of five

The evaluation of this list is illustrated in Fig. 6.1.

Example 6.2.3

Although the Default Rule is not trivial, there are several advantages to it. First, it has only two steps,
and they are always the same. Second, it can be used on arbitrarily complex lists without requiring any
modifications. For example, recall the interaction:

> (+ 2 (* 3 10))
32

If we follow the rules we already know, we will see that nothing new is needed to explain this interaction.
First, the character sequence (+ 2 (* 3 10)) is a legal Scheme expression that denotes a list. The
denoted list contains three items: the + symbol, the number two, and a subsidiary list. The subsidiary list
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List containing:
+ symbol
number two
number three

addition func

Evaluation Function

number two
number three

number five→ 5(+ 2 3)→

Figure 6.1: The evaluation of the list denoted by (+ 2 3)

contains three items: the * symbol, the number three, and the number ten. (You should convince yourself
of all of this before proceeding.) Okay, so far so good: we have seen that our input expression denotes a
particular list. That list, which happens to be a list of lists, shall be the Input Datum for the evaluation
function.
To evaluate this list, we need to use the Default Rule. The first step of the Default Rule requires us to
evaluate each item in the list:

the + symbol =⇒ the addition function

the number two =⇒ the number two

the subsidiary list =⇒ oops!
Before we can complete the first step of the Default Rule, we must evaluate the subsidiary list (i.e., the list
containing the * symbol, the number three, and the number ten). Okay, so we pause for a moment, collect
our thoughts, and then proceed.

To evaluate the subsidiary list, we need to use . . . the Default Rule! The first step of the Default Rule
requires us to evaluate each item in the list:

the * symbol =⇒ the multiplication function

the number three =⇒ the number three

the number ten =⇒ the number ten

The second step of the Default Rule requires us to apply the first item (i.e., the function) to the rest of the
items. In other words, we need to apply the multiplication function to the numbers three and ten. The result
is the number thirty.

Now that we know that the subsidiary list evaluates to thirty, we can pick up from where we left off when
evaluating the original list. The first step of the Default Rule (for evaluating the original list) requires us
to evaluate each item in the list:

the + symbol =⇒ the addition function

the number two =⇒ the number two

the subsidiary list =⇒ the number thirty

The second step of the Default Rule then requires us to apply the first item (i.e., the addition function) to
the rest of the items (i.e., the numbers two and thirty). The result is the number thirty-two. And that is
the Output Datum that results from evaluating the original list! Phew! Of course, DrScheme reports this
result using the character sequence 32.
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6.2.1 A More Formal Description of the Default Rule
Consider a list L that contains n data items, D1, D2, . . . Dn. The evaluation of the list L is derived as follows:

• First, evaluate each of the data items, D1, D2, . . . , Dn. The result will be n (possibly different) data items,
K1,K2, . . . ,Kn:

D1 =⇒ K1

D2 =⇒ K2

. . .

Dn =⇒ Kn

• Now, for the Default Rule to work, K1 must be a function. (If K1 is some other kind of datum, then
DrScheme will report an error.)

• The second step is to apply the function K1 to the rest of the items, K2, . . . ,Kn. In other words, the items
K2, . . . ,Kn are fed as input to the function K1. (If the function K1 cannot accept that number of inputs, or
if those items have the wrong data type, then DrScheme will report an error.) The resulting output will be
some datum, P .

• The evaluation of the list L is defined to be that datum P (i.e., L =⇒ P ).

As indicated by the parenthetical comments, it is possible for some things to go wrong in the process of
evaluating a non-empty list. For example, the function K1 might expect a different number of inputs than are
present in the rest of the original list. Or the attempt to evaluate one of the data Di might be undefined. Or the
application of the function K1 to the inputs K2, . . . ,Kn might be undefined because, for example, the function
expects numbers and it gets something else. In any of these cases, the result is undefined and DrScheme would
report an error. Thus, none of the following lists can be evaluated:

a list containing the numbers one, two and three

a list containing two instances of the empty list

a list containing the + symbol, followed by the boolean true and the boolean false

It is important to understand that each of the above lists is a valid Scheme datum: each one is a list. It’s just that
these lists cannot be evaluated.

Example 6.2.4

Here’s an example of the default case of evaluating a non-empty list where things work out. Let L be the
list containing the following data:

D1: the + symbol, D2: the number one, D3: the number two, D4: the number three

These Scheme data evaluate to the following:

K1: the addition function, K2: the number one, K3: the number two, K4: the number three

Since the first of these, K1, is in fact a function, it can be applied to the inputs K2, K3 and K4 (i.e., the
numbers one, two and three). This results in the output six, which is itself a Scheme datum. The number
six is the result of evaluating the original list L, as illustrated below.

> (+ 1 2 3)
6

Notice that because the addition function is a primitive function, its operation is invisible to us. We observe
the inputs going in and the output coming out, but we do not get to see how the output is generated.
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The Default Rule for evaluating non-empty lists is how function application is made available to the Scheme
programmer. In particular, if you want to apply a given function to a bunch of inputs, you create an expression
that denotes the appropriate list and feed it to DrScheme.

The Default Rule has two steps. The first step involves evaluating each item in the original list, resulting in a
bunch of new items. The second step involves applying the first new item—which must be a function—to the rest
of the new items—which are the inputs to that function. The output value obtained by applying that function to
those inputs is taken to be the output of evaluating the original list.

Scheme is called a functional programming language because function application is the central part of the
computational model of Scheme. And the Default Rule is how the programmer gets function application to
happen.

At this point, you should be able to write arbitrarily complex expressions that, when fed to DrScheme, cause
correspondingly complex arithmetic computations to happen. That’s pretty good. However, we’ll have much more
fun when we can design our own functions to do whatever we want them to do. For that, we’ll need the define
and lambda special forms, which shall be described in the next chapter.

Example 6.2.5

The fact that 17 divided by 3 yields an answer (i.e., quotient) of 5 with a remainder of 2 can be confirmed
by applying the built-in quotient and remainder functions:

> (quotient 17 3)
5
> (remainder 17 3)
2

Example 6.2.6

According to the contract for (the simplest use of) the built-in printf function (cf. Section 5.5.1), if
the printf function is applied to a single input that is a string, then it will display the contents of that
string—without the double-quotes—in the Interactions Window as side-effect printing, but the output value
will be the void datum, as illustrated below.

> (printf "hi there")
hi there
> (printf "this is a long string!")
this is a long string!

Note that the textual information displayed by DrScheme in each case is side-effect printing, not a Scheme
output value. More interesting uses of the printf function will be described in Chapter 10.

? By default, DrScheme clearly distinguishes side-effect printing from Scheme output values by displaying
side-effect printing in one color, and output values in another, as illustrated in Fig. 6.2.

Example 6.2.7

According to the contract for the built-in void function (cf. Section 5.5.2), the void function can be
applied to any number of inputs, but invariably returns the void datum as its output, as illustrated below.

> (void)
>
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Figure 6.2: DrScheme’s use of different colors to distinguish side-effect printing from output values

> (void 3 #t () "xyz")
>

Note that DrScheme does not display anything (other than the prompt) in the Interactions Window when
the output value is the void datum.

Example 6.2.8

We can use the Default Rule to explicitly apply the evaluation function to some inputs, as demonstrated
below:

> (eval +)
#<procedure:+>

In this example, the list contains two items: the eval symbol and the + symbol. To evaluate this list using
the Default Rule, we first evaluate each item in the list:

eval symbol =⇒ the evaluation function

+ symbol =⇒ the addition function

The second step of the Default Rule requires us to apply the first item (i.e., the evaluation function) to the
second item (i.e., the addition function). Since Scheme functions always evaluate to themselves, the result
is simply the addition function. DrScheme reports this result to as, in effect, the function associated with
the + symbol.

6.3 Summary

The evaluation of non-empty lists plays a critical role in Scheme’s computational model. By default, non-empty
lists are evaluated using the Default Rule. The Default Rule has two steps:

(1) evaluate each element of the non-empty list; and

(2) apply the result of evaluating the first element to the results of evaluating all of the rest of the elements.

The result from Step Two is taken to be the result of evaluating the original non-empty list.
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The Default Rule enables a Scheme programmer to apply a function to any desired inputs: just ask DrScheme
to evaluate a list whose first element evaluates to the desired function, and the rest of whose elements evaluate to
the desired inputs, as illustrated below:

> (+ 3 (* 4 10))
43

As this example demonstrates, the evaluation of a list containing other lists is handled quite naturally: during the
first step, when each element of the list must be evaluated, any subsidiary lists are evaluated by . . . the Default
Rule!

Later on, when you create functions of your own (cf. Chapter 9) you will give each new function a name
(cf. Chapter 7). By doing so, you will then be able to apply your new function to whatever inputs you wish,
courtesy of the Default Rule.

The evaluation of non-empty lists is only defined when the first element of the list evaluates to a function; and
the rest of the elements evaluate to appropriate inputs for that function. Asking DrScheme to evaluate non-empty
lists that do not meet these criteria typically results in an error. (The special forms introduced in Chapter 7 are
exceptions to this.)



Chapter 7

Special Forms

In DrScheme, there is a special class of symbol expressions called keywords. Examples of keywords include:
and, cond, define, dotimes, if, lambda, let, or and quote. Each of these keywords is a legal Scheme
expression that denotes a symbol. For example, quote denotes the quote symbol, and lambda denotes the
lambda symbol. For expository convenience, we may refer to expressions such as quote and lambda as keyword
expressions, and the corresponding symbols (i.e., the quote symbol and the lambda symbol) as keyword symbols.
However, that is not the interesting thing about keywords. The interesting thing about keywords is this:

? When the first element of a non-empty list is a keyword symbol, then that list is a special form; and each
kind of special form has its own special mode of evaluation.

For example, each of the following expressions denotes a list that is a special form:

(define x 3)

(quote (3 4 5))

(if condition then-clause else-clause)

(let ((x 4)) (+ x 8))

The important thing about special forms is that they are not evaluated according to the Default Rule introduced in
Chapter 6. Instead, a special form is evaluated according to a special rule that is specific to the type of that special
form—which is determined by the keyword symbol. Thus, there is one rule for evaluating define special forms,
another rule for evaluating quote special forms, and so on. Importantly, each define special form is evaluated
in the same way, just as each quote special form is evaluated in the same way. However, the rule for evaluating
define special forms is very different from the rule for evaluating quote special forms.

Over the next several chapters, you will be introduced to about a dozen different kinds of special form. For
each kind of special form, you will learn both the syntax and the semantics. The syntax of special forms is always
in terms of a list whose first element is a keyword symbol; the rest of the list can be simple or complex, depending
on the kind of special form. The semantics of a special form has two parts: (1) the list that is denoted by the
special form expression, and (2) the special mode of evaluation for that kind of special form. As time goes on,
you will use these special forms so often that their special modes of evaluation will become second nature to you.
And, once you get the hang of it, learning the syntax and semantics for each new kind of special form will get
easier and easier.

Note. In the Default Rule for evaluating non-empty lists, the first thing that happens is that each element of
the list is evaluated, one after the other. In contrast, when evaluating a special form, which is also a non-empty
list, some of the elements of that list may not be evaluated. Indeed, the first element of a special form (i.e., the
keyword symbol) is never evaluated. (If DrScheme attempted to evaluate a keyword symbol, it would cause an
error because the Global Environment typically does not contain entries corresponding to keyword symbols.)

The next sections introduce the define and quote special forms that you will use every day for the rest of
your Scheme-programming life!

33
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7.1 The define Special Form
The define special form is signaled by the define keyword. Its purpose is to insert a new symbol/value pair
into the Global Environment.1

7.1.1 The Syntax of the define Special Form
A define special form expression is any character sequence of the form

(define C1 C2)

where C1 is an expression denoting some Scheme symbol s, and C2 can be any expression denoting any Scheme
datum, e, as illustrated below.

C1 −→ s and C2 −→ e

Therefore:

(define C1 C2) −→ List containing the define symbol, the s symbol, and the datum e

For example, (define x (+ 3 4)) is a define special form expression that denotes a list containing:

(1) the define keyword symbol,

(2) the symbol x, and

(3) the list denoted by (+ 3 4).

Some more examples of define special form expressions are given below.

(define addn-func +)

(define zero 0)

(define empty-list ())

7.1.2 The Semantics of the define Special Form
Each special form denotes a list; the define special form is no exception. More interesting is what happens
when a define special form is evaluated. The special rule for evaluating define special forms is illustrated
below:

(define C1 C2) −→ [ List containing define, s and e =⇒ ] −→

where the gray boxes are used to highlight the following facts:

? The evaluation of a define special form does not generate any output value. (Well, technically, it generates
the void datum as its output. Recall from Section 2.1.4 that the void datum is used to represent “no value”.)

Instead:

? The purpose of the define special form is not to compute an output value, but to generate a very important
side effect—namely, to insert a new entry into the Global Environment.

DrScheme evaluates a define special form by taking the following steps, in order:

(1) Insert a new entry, s void , into the Global Environment, where void is a temporary place-
holder representing that there is not yet any value associated with the symbol s.

(2) Evaluate the datum e, yielding some (usually different) datum E: e =⇒ E.

(3) Insert E as the value for s in the Global Environment: s E .
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Input Datum
List containing:
define symbol
The s symbol
The datum e

(1) New entry inserted into
Global Environment

...

......

E

...

s

Global Environment
symbol value

side effect

Evaluation Function

(3) E becomes value for s

(2) e⇒ E

no output!

Figure 7.1: The side effect of define: inserting a new entry into the Global Environment

This process, except for the part about the use of void as a temporary placeholder, is illustrated in Fig. 7.1.
The purpose of evaluating a define special form is its side effect: to create a new entry in the Global

Environment. Since it does not generate any output value—or, rather, since it generates the void datum as its
output—DrScheme does not display anything in the Interactions Window in response to define special forms,
as illustrated below:

> (define x 6)
> (define y 3)
> (define z 34)
>

Of course, something has happened!

Example 7.1.1

Typing the character sequence, (define x (+ 1 2 3)), into the Interactions Window and hitting the
Enter key would result in the number six being associated with the symbol x in the Global Environment, as
illustrated below.

the symbol x the number sixSide Effect: New Global Environment Entry:

a list containing the + symbol and
the numbers one, two and three

=⇒ the number six(+ 1 2 3) −→

x −→ the symbol x

As noted above, DrScheme does not report any output value when evaluating a define special form.
However, after evaluating it, subsequent attempts to evaluate the symbol x result in the value 6, as illus-
trated below:

1The define special form can also be used to insert entries into a local environment, but we shall not explore this capability.
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> x
BUG! reference to undefined identifier: x
> (define x (+ 1 2 3))
> x
6
> (* x 100)
600
> x
6
> (* x 1000)
6000
> (* x x)
36
> x
6

Notice that the first attempt to evaluate the symbol x resulted in an error; however, after the define
special form has been evaluated, each time the symbol x needs to be evaluated, the result is the value six.
The subsequent expressions can be evaluated using what we have learned in previous chapters. We need
the Default Rule and we need to know how to evaluate symbols. No new rules are needed. Part of the
beauty of Scheme’s computational model is that once it is learned, it can be used in an unbelievably wide
variety of circumstances.

Example 7.1.2: Confirming the semantics of define

The following admittedly unusual interactions confirm the semantics of the define special form.

> w
BUG! reference to undefined identifier: w
> (define w w)
> w
>

Prior to evaluating the define special form, attempting to evaluate the symbol w results in an error,
because there is no entry (yet) for w in the Global Environment. However, evaluating the define special
form inserts an entry for w into the Global Environment. In particular, as described earlier, the following
three steps are taken by DrScheme in evaluating the expression (define w w):

(1) A new entry, w void , is inserted into the Global Environment.

(2) The expression w is evaluated, yielding the value void: w =⇒ void.
(That’s what’s currently stored in the Global Environment as the value for w!)

(3) That value (i.e., void) is inserted as the value for w in the Global Environment.

Of course, in this case, the third step is redundant, since void is already there as the value for w.
Afterward, when we ask DrScheme to evaluate w, it does so, coming up with the answer void. However,

since void is used to represent “no value”, DrScheme does not display anything! Instead, it just skips to
the prompt, awaiting further instructions.

Note. Since a keyword is a symbol, like any other Scheme symbol, you could use the define special form to
assign some value to it in the Global Environment. However, this is a bad idea precisely because it would cause
that symbol to lose its status as a keyword. Thereafter, you would not be able to use special forms relying on that
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keyword. This is something you might want to do once, just for fun. Afterward, you’ll want to hit DrScheme’s
Run button to reset the Global Environment (i.e., to erase what you’ve done and thereby restore that symbol’s
status as a keyword).

7.2 The quote Special Form
Recall that whenever we enter an expression into the Interactions Window, DrScheme invariably evaluates the
corresponding Input Datum to generate an Output Datum. (You may wish to refer back to Fig. 4.1.) However,
sometimes we are interested in data that cannot be evaluated (e.g., a list containing a bunch of Social Security
numbers). Since attempting to evaluate such data would cause an error, and since DrScheme always performs an
evaluation, we need some way of shielding data from DrScheme’s evaluation. That is the purpose of the quote
special form.

7.2.1 The Syntax of the quote Special Form
The quote special form is indicated by the quote keyword. As a character sequence, it has the form

(quote C)

where C can be any legal Scheme expression. Below are listed several examples:

(quote x)

(quote (1 2 3))

(quote (hi there + #t ()))

(quote (1 (2 (3))))

7.2.2 The Semantics of the quote Special Form
Each quote special form denotes a list. In particular, an expression of the form, (quote C), denotes a list
containing two items: the quote symbol and whatever C denotes. For example, the expression (quote x)
denotes a list containing the quote symbol and the symbol x. Similarly, (quote (1 2 3)) denotes a list
containing the quote symbol and a subsidiary list of numbers. More formally, if C denotes some datum, D, then
(quote C) denotes a list containing the quote symbol and D. Using the arrow notation, we can say:

If: C −→ D

Then: (quote C) −→ a list containing the quote symbol and D

Evaluating quote special forms. The evaluation of a quote special form does not use the Default Rule for
evaluating non-empty lists. Instead, quote special forms are evaluated using the following special rule:

? A list containing the quote symbol and D evaluates to . . . D.

Notice that, according to this rule, neither the quote symbol nor the datum D are evaluated.2 Instead, D is the
result of evaluating the two-element list. Indeed, the whole point of the quote special form is to shield D from
evaluation.

Example 7.2.1

Each of the following is an example of a quote special form:

2In fact, the keyword symbol is never evaluated in a special form of any kind. The purpose of the keyword symbol is simply to indicate
that the given list is a special form, thereby requiring a special mode of evaluation.
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> (quote x)
x
> (quote (1 2 3))
(1 2 3)
> (quote (+ 2 3))
(+ 2 3)

In the first example, (quote x) denotes a list containing the quote symbol and the symbol x. That list is
the Input Datum. The result of evaluating that list is the symbol x—that is the Output Datum. Notice that
the list is evaluated, but its second element is not. We can abbreviate this evaluation as follows:

(quote x) −→ [ {list with symbols quote and x} =⇒ the symbol x ] −→ x

This is quite different from the Default Rule for evaluating non-empty lists. Well, that’s to be expected: the
Default Rule was not used!

In the second example, (quote (1 2 3)) denotes a list containing the quote symbol and a sub-
sidiary three-element list. The result of evaluating that list is its second element (i.e., the subsidiary
three-element list). Notice that the list containing the numbers one, two and three has not been evaluated.
Indeed, any attempt to evaluate such a list would cause DrScheme to report an error since the first element
of that list does not evaluate to a function. This example illustrates the use of a list as a container for
data rather than something we’d like to have evaluated. The quote special form comes in handy for such
cases.

In general, if C is an expression denoting some datum D, then entering the expression, (quote C), into
DrScheme will cause the following to happen:

(quote C) −→ [ {list containing quote symbol and D} =⇒ D ] −→ C′

Notice that the Input Datum is the two-element list that contains the quote symbol and the datum D. The Output
Datum is simply D. Notice, too, that DrScheme may use a different character sequence, C′, to describe D to us;
however, C′ must nonetheless denote D. (An example of this will be given shortly.)

Example 7.2.2

Notice the difference between the evaluations of x and (quote x) below:

> (define x (+ 1 2 3))
> x
6
> (quote x)
x

Example 7.2.3

Here, we use the define special form to create a variable named my-list whose value is a three-
element list. Notice the use of the quote special form to shield the three-element list from evaluation.

> (define my-list (quote (1 2 3)))
> my-list
(1 2 3)
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7.2.3 Alternate Syntax for quote Special Forms

Since quote special forms are used so frequently, there is an alternate syntax for them. In particular, if C is
any Scheme expression denoting some datum D, then the expressions, (quote C) and ’C, denote the same
two-element list—namely, a list containing the quote symbol and the datum D:

(quote C) −→ list containing quote symbol and D

’C −→ list containing quote symbol and D

The two character expressions are quite different, but both represent the same list! (Syntax vs. Semantics!)

Example 7.2.4

The expressions, ’num and (quote num), each represent a list containing the quote symbol and the
num symbol, as illustrated below:

> (quote num)
num
> ’num
num

Although the abbreviation for quote special forms is useful, it requires care to remember that such expressions
denote lists—and that those lists are evaluated using the special rule for the quote special form.

Example 7.2.5

The following examples demonstrate the equivalence between the two kinds of syntax for the quote
special form.

> (quote (quote x))
’x
> ’’x
’x
> (quote 000)
0
> ’000
0

In the first example, DrScheme has chosen a different character sequence for describing the Output
Datum—in this case, a list containing the quote symbol and the x symbol. Similar remarks apply to
the third and fourth examples, where the number zero has been shielded from evaluation, but DrScheme
has chosen to report the result using a more compact character sequence.

7.3 Summary
This chapter introduced special forms. A special form is a non-empty list whose first element is one of Scheme’s
special keyword symbols (e.g., define or quote). The keyword symbol determines the kind of special form
(e.g., a define special form or a quote special form). Although they are non-empty lists, special forms are not
evaluated by the Default Rule; instead, each kind of special form is evaluated by its own special rule: one rule for
define special forms, one rule for quote special forms, and so on. The rules for evaluating special forms are
very different from the Default Rule. For example, the first element of a special form is never evaluated. And,
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frequently, some or all of the other elements are not evaluated either. This chapter focused on the define and
quote special forms.

? The define special form generates no output value, but has a very useful side effect: it inserts a new entry
into the Global Environment.

? The quote special form is used to shield a datum from evaluation; it has no side effects.

The define special form enables us to use symbols as variables (i.e., names for pieces of data). Later on, when
you create functions of your own design, you will typically use the define special form to give them names. In
turn, this will enable you to apply your new functions to any desired inputs simply by asking DrScheme (and the
Default Rule) to evaluate an appropriate non-empty list.

The quote special form is useful when treating symbols or non-empty lists as pieces of data, rather than using
them as names of variables or vehicles for applying functions to inputs. For example, the Default Rule would have
problems evaluating a list containing a bunch of student names, but the quote special form could be used to
shield that list from evaluation, as illustrated below:

> (quote (john paul george ringo))
(john paul george ringo)
> ’(john paul george ringo)
(john paul george ringo)

Special Forms Introduced in this Chapter

define For inserting a new entry in the Global Environment

quote For shielding a Scheme datum from evaluation



Chapter 8

Predicates

A function whose output is always a boolean (i.e., true or false) is called a predicate. (This is just convenient
terminology; there is no predicate type in Scheme.) This chapter describes some of the commonly used, built-in
Scheme predicates and illustrates their use.

8.1 Type-Checker Predicates
Scheme includes a bunch of primitive data types, including: number, boolean, symbol, null and function. Scheme
also includes non-primitive data types, including strings and non-empty lists. For each one of these data types,
Scheme includes a primitive function called a type-checker predicate. When a type-checker predicate is applied
to some Scheme datum, it outputs true if that datum belongs to the indicated data type; otherwise, it outputs false.
Thus, the type-checker predicate associated with the number data type outputs true whenever the input belongs to
the number data type. Similarly, the type-checker predicate associated with the list data type outputs true whenever
the input datum belongs to the list data type.1 And so on.

For convenience, each of these type-checker predicates has an easy-to-remember name. In other words, for
each type-checker predicate there is an entry in the Global Environment that links a particular symbol with that
predicate. Thus, those symbols can be used to refer to the type-checker predicates. For example, the symbol
number? evaluates to the type-checker predicate for the number data type; the symbol boolean? evaluates to
the type-checker predicate for the boolean data type; and so on.

Example 8.1.1

The following Interactions Window session demonstrates the existence of some of the built-in type-checker
predicates.

> number?
#<procedure:number?>
> symbol?
#<procedure:symbol?>
> boolean?
#<procedure:boolean?>
> list?
#<procedure:list?>
> null?
#<procedure:null?>
> procedure?
#<procedure:procedure?>

1The list data type is a compound data type that includes both non-empty lists and the empty list.

41



42 Introduction to Computer Science via Scheme c© 2019 Luke Hunsberger Spring 2019

> void?
#<procedure:void?>
> string?
#<procedure:string?>

Notice that the symbols mirror the names of the corresponding data types, except that the symbol associ-
ated with the type-checker predicate for functions is procedure?, not function?.a

aThis text uses the terms, function and procedure, interchangeably; however, the term function seems better suited given that
Scheme is typically referred to as a functional programming language.

Each type-checker predicate is a function that can be applied to a single input. That input can be any type of
Scheme datum. A type-checker predicate returns true if that input datum is of the appropriate data type.

Example 8.1.2

Here’s a contract for the built-in number? type-checker predicate:

Name: number?
Input: d, any Scheme datum
Output: #t if d is a number; otherwise, #f

The contracts for the other type-checker predicates are similar.

Example 8.1.3

The following interactions illustrate the behavior of the type-checker predicates.

> (number? 3)
#t
> (number? #t)
#f
> (boolean? #f)
#t
> (boolean? ’x)
#f
> (symbol? +)
#f
> (symbol? ’+)
#t
> (null? ())
#t
> (null? ’(+ 1 2))
#f
> (procedure? +)
#t
> (procedure? ’+)
#f
> (list? ’(+ 1 2))
#t
> (list? ())
#t
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> (list? +)
#f
> (void? (void))
#t
> (void? void)
#f
> (string? "abc")
#t
> (string? ’("a" "b" "c"))
#f
> (string? #t)
#f

Each of these expressions denotes a non-empty list that is evaluated according to the Default Rule. In each
case, the first element of the list is a symbol that evaluates to a function, which is then applied to whatever
the second element evaluates to. Notice that the + symbol in (procedure? +) evaluates to the addition
function, whereas the ’+ expression in (procedure? ’+) evaluates to the + symbol. Notice too that
the list? type-checker predicate returns true for any list, whether empty or non-empty. Finally, recall
that void is a built-in function whose output is the void datum. Thus, (void) evaluates to the void
datum, whereas the symbol void evaluates to the built-in function.

8.2 Comparison Predicates
In addition to the primitive arithmetic functions for addition, subtraction, multiplication and division, Scheme
includes several predicates for comparing numbers. Examples include the greater-than, less-than and equal
predicates.2 To enable us to refer to such predicates, each is associated with a particular symbol in the Global
Environment.

> greater than
>= greater than or equal to
= equal to
< less than
<= less than or equal to

Each of these predicates, when applied to two numeric inputs, generates the expected boolean output, as illustrated
below.3

Example 8.2.1

> (> 3 4)
#f
> (> 4 3)
#t
> (>= 4 3)
#t
> (= 3 4)
#f
> (= 3 3)
#t

2In other contexts, these predicates are commonly called relational operators.
3These predicates can also be applied to more than two inputs; however, we shall postpone discussion of such things until Chapter ??.
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DrScheme also provides a comparison predicate called eq? that is more general that the = predicate. Whereas
the = predicate only works on numerical input, the eq? predicate can be used to test the equality of inputs that
can be any combination of numbers, booleans, symbols or the empty list. Here’s a contract for the eq? predicate.

Name: eq?
Inputs: d1, a number, boolean, symbol, or the empty list

d2, a number, boolean, symbol, or the empty list
Output: #t if d1 and d2 are the same; #f otherwise.

Example 8.2.2

Here are some examples of the eq? predicate in action.

> (eq? 3 3)
#t
> (eq? 3 ’x)
#f
> (eq? ’x ’x)
#t
> (eq? ’x #t)
#f
> (eq? ’x ())
#f
> (eq? () ())
#t

The eq? predicate is most frequently used to compare whether two symbols are the same. If you know that the
inputs will be numbers, then you should use the = function. And if you know that the inputs will be booleans
. . . stay tuned!

? The eq? function does not work well when comparing non-empty lists! More on that later!

8.3 Summary

This chapter introduced predicates—that is, functions that generate boolean output values. DrScheme provides a
wide variety of built-in predicates. Each built-in predicate has a corresponding entry in the Global Environment so
that it can be used by a Scheme programmer. For example, the built-in less-than predicate is the value associated
with the < symbol in the Global Environment. By taking advantage of the Default Rule for evaluating non-empty
lists, the less-than function can be applied to inputs, as demonstrated below:

> (< 3 4)
#t
> (< (+ 2 3) (- 10 9))
#f

This chapter introduced two sets of built-in predicates: type-checker predicates and comparison predicates. Type-
checker predicates simply check whether a given datum belongs to a specified data type. For example, the
number? predicate checks whether its input is a number, and the list? predicate checks whether its input
is a list, as demonstrated below:
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> (number? 3)
#t
> (number? ’(a b c))
#f
> (list? ’(a b c))
#t

The list? predicate works for any kind of list: empty or non-empty. The null? predicate works only for
the empty list. The procedure? predicate works for functions. The comparison predicates include the stan-
dard functions for comparing numbers (e.g., less-than and greater-than-or-equal-to), as well as the more general
eq? predicate that works on any combination of numbers, booleans, symbols, or the empty list.

Built-in Functions Introduced in this Chapter

Type-checker Predicates: number?, symbol?, boolean?, list?,

null?, procedure?, void?, string?.

Comparison Predicates: <, <=, =, >=, > (these work only on numbers).

eq? (this works on numbers, booleans, symbols or the empty list).
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Chapter 9

Defining Functions

So far, what we know about Scheme is enough to enable us to use the Interactions Window like we would a
glorified calculator. There are lots of built-in functions that we can apply to various kinds of input. Each built-
in function has a more-or-less convenient name (i.e., for each built-in function there is an entry in the Global
Environment that links a particular symbol to that function). However, the fun won’t really begin until we can
design our own functions to do whatever we want them to do. This chapter describes how to do this in the Scheme
programming language.

9.1 Defining Functions vs. Applying Them to Inputs

Example 9.1.1

In a math class, you might see a function defined using an equation such as

f(x) = x2

In this case, the name of the function is f , and we might casually describe it as the squaring function—
because for each possible input value, x, the corresponding output value is the square of x (i.e., x2).
Notice that the mathematical definition, f(x) = x2, gives a prescription for generating appropriate output
values should f ever happen to be applied to any input values. In particular, the definition of f includes
an input parameter, x, that is used to refer to potential input values. In addition, the expression, x2, on
the righthand side of the equation indicates how to compute the corresponding output value for any given
value of x. (The expression on the righthand side is sometimes referred to as the body of the function.) For
example, if we wanted to know the output value generated by f when given 3 as its input, we could get the
answer by first substituting the value 3 for x in the expression, x2, yielding 32. Evaluating the expression,
32, would then yield the desired output value, 9. Similarly, if we wanted to know the output value generated
by f when given the input value 4, we would first substitute the value 4 for x in the expression, x2, yielding
42, which evaluates to 16.

Example 9.1.2

In the preceding example, the function f took a single input value. However, we can similarly define func-
tions that take multiple inputs. For example, the function, g, defined below, takes two inputs, represented
by the input parameters w and h:

g(w, h) = wh

This function can be used to compute the area of a rectangle whose width is w and height is h. To apply
this function to the input values, 3 and 7, we first substitute 3 for w, and 7 for h in the expression, wh,
yielding 3 · 7. Evaluating this expression results in the desired output value, 21.
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In general, the mathematical definition of a function specifies how to generate appropriate output values should
the function ever be applied to any input values. A function definition includes a list of input parameters and a
body. Once a function has been defined, it can be applied to appropriate input values as follows. First, the desired
input values are substituted for the appropriate input parameters in the body of the function. Next, the resulting
expression is evaluated, thereby yielding the desired output value.

Example 9.1.3

The following defines a function, v, that can be used to compute the volume of a cone:

v(r, h) =
1

3
πr2h

It has two input parameters, r and h, that respectively represent the radius and height of the cone. To
compute the volume of a cone of radius 3 and height 2, we apply the function v to the input values 3 and
2, as follows. First, we substitute the values 3 and 2 for r and h, respectively, in the body, 1

3πr
2h, yielding

the expression, 1
3π(3

2)(2). Evaluating this expression yields the desired output value, 6π.

9.2 The lambda Special Form
The Scheme programming language provides the lambda special form to enable us to specify functions of our
own design.

? The use of the lambda symbol in a lambda special form is a tip of the cap to the fact that the underlying
mathematical theory, originally developed in the 1930s, is called the Lambda Calculus.

Like any special form in Scheme, the lambda special form is a list whose first element is a keyword symbol—
in this case, the symbol lambda. The second element in a lambda special form is used to specify the input
parameter(s) for the function being defined. The rest of the elements in the lambda special form constitute the
body of the function being defined. If you’re wondering where the name of the function is specified, recall that
the define special form is used to assign names to things in Scheme. Furthermore, a single function could have
several different names. Thus:

? The lambda special form specifies everything about a function except its name.

Example 9.2.1: The Squaring Function in Scheme

Recall the mathematical definition of the squaring function:

f(x) = x2

This mathematical definition does three things:

• It specifies a single input parameter, x, for the function being defined;

• It specifies a body, x2, for the function being defined; and

• It specifies a name, f , for the function being defined.

In Scheme, the first two jobs are handled by the lambda special form. For example, the following lambda
expression can be used to specify a squaring function in Scheme:

(lambda (x) (* x x))

This lambda expression denotes a lambda special form (i.e., a Scheme list whose first element happens
to be the lambda symbol). Like any special form, a lambda special form has its own, special rule for
being evaluated. For now, suffice it to say that:
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? The evaluation of a lambda special form always results in a function.

Thus, if the expression, (lambda (x) (* x x)), is typed into the Interactions Window, DrScheme
will report that its evaluation yields a function, as illustrated below:

> (lambda (x) (* x x))
#<procedure>

Admittedly, the character sequence generated by DrScheme is not very descriptive. It simply says that the
evaluation of the corresponding lambda special form has resulted in a function.

? At this point, it is important to stress that the function has been created; however, it has not yet been
applied to any inputs!

We can demonstrate that the function created above behaves like a squaring function by first giving it
a name and then applying it to a variety of input values. The following Interactions Window session
demonstrates how to name our function:

> (define square (lambda (x) (* x x)))
>

The define special form is used to create an entry in the Global Environment that associates the square
symbol with the function specified by the lambda expression. Recall that when a define special form
is evaluated, the given symbol—in this case, square—is not evaluated; however, the given expression—
in this case, (lambda (x) (* x x))—is evaluated. Thus, the value associated with the square
symbol is the function that results from evaluating the given lambda special form, as demonstrated below.

> square
#<procedure:square>

Once we have given a name to our function, we can then use it like any of the built-in functions, as
demonstrated below:

> (square 3)
9
> (square 4)
16
> (square -8)
64

Each of the above expressions is evaluated using the Default Rule for evaluating non-empty lists. In each
case, the square symbol evaluates to the function that we defined earlier, which is then applied to the
desired input value.

Example 9.2.2

Incidentally, it is possible to define and apply a function without ever having given it a name, as the
following Interactions Window session demonstrates:

> ((lambda (x) (* x x)) 4)
16
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The Default Rule for evaluating non-empty lists is used to evaluate the above expression. In the process,
each element of the list is evaluated. The first element of the list is the lambda special form, which
evaluates to the (unnamed) squaring function. The second element of the list evaluates to the number four.
The result of applying that function to that input yields the desired output, sixteen. Later on, we shall
encounter situations where it is convenient to use functions without bothering to name them.

Example 9.2.3

The following Interactions Window session demonstrates how to define, name, and apply functions analo-
gous to the functions, g(w, h) = wh and v(r, h) = 1

3πr
2h, seen earlier:

> (define rect-area (lambda (w h) (* w h)))
> (rect-area 2 3)
6
> (rect-area 3 8)
24
> (define cone-volume (lambda (r h) (* 1/3 3.14159 r r h)))
> (cone 1 3)
3.14159
> (cone-volume 10 1)
104.71966666666665

In the cone-volume function, 3.14159 is used as an approximation of π, and the expression,
(* 1/3 3.14159 r r h), takes advantage of the fact that the built-in multiplication function can
be applied to any number of input values.

9.3 The Syntax and Semantics of Lambda Expressions
This section presents the syntax and semantics of lambda expressions. Initially, it restricts attention to those in
which the body consists of a single expression; later, it addresses those in which the body consists of multiple
expressions.

9.3.1 The Syntax of a Lambda Expression
A lambda expression has the following syntax:

(lambda (C1 C2 . . . Cn) B)

where:

• each Ci is a character sequence denoting some Scheme symbol, si;

• the symbols, s1, s2, . . . , sn, are distinct (i.e., there are no duplicates); and

• B is a character sequence denoting a Scheme datum, D, of any kind.

Thus, C1, C2, . . . , Cn specify n distinct input parameters for the lambda expression, and B specifies the body of
the lambda expression.

Example 9.3.1

The following are examples of well-formed lambda expressions:

• (lambda () 44)
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• (lambda (x) (* x x))

• (lambda (w h) (* w h))

• (lambda (r h) (* 1/3 3.14159 r r h))

• (lambda (x y z) (* x (- y z)))

For the last expression, (x y z) specifies the parameter list and (* x (- y z)) specifies the body.

Example 9.3.2

In contrast, the following are examples of malformed lambda expressions:

• (lambda (x y x) (* x y))

• (lambda (x 10) (* x 10))

• (lambda x)

9.3.2 The Semantics of a Lambda Expression
The semantics of a lambda expression stipulates the Scheme datum that the lambda expression denotes, as well
as how that Scheme datum is evaluated. As suggested by the preceding examples, a lambda expression invariably
denotes a list—called a lambda special form—and the evaluation of that list invariably results in a Scheme
function. The semantics of the lambda expression also includes a description of the subsequent behavior of that
function should it ever be applied to any input(s).

The list denoted by a lambda special form. Assuming that

• each Ci denotes a Scheme symbol, si;

• the symbols, s1, s2, . . . , sn, are distinct; and

• B denotes some Scheme datum D,

then a lambda expression of the form

(lambda (C1 C2 . . . Cn) B)

denotes a Scheme list whose elements are as follows:

• the lambda symbol;

• a list containing n distinct symbols, s1, s2, . . . , sn; and

• the Scheme datum, D

This list is referred to as a lambda special form.

Note. By now, you should be getting used to the fact that a piece of syntax, such as (lambda (x) (* x x)),
denotes a Scheme datum—in this case, a Scheme list containing the lambda symbol and two subsidiary lists. Al-
though it is important to be able to distinguish expressions from the Scheme data they denote, doing so can get
quite tedious in chapter after chapter. Therefore, for the sake of expository convenience, the rest of this book shall
frequently blur this distinction. Thus, we may talk of the list, (1 2 3), even though we really mean the list
denoted by the expression (1 2 3). Similarly, we may say that the expression (lambda (x) (* x x))
evaluates to a function, when we really mean that the list denoted by the expression (lambda (x) (* x x))
evaluates to a function.
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The Evaluation of a lambda Special Form

? The most important thing to know about the evaluation of a lambda special form is that the result is
invariably a function; however, the evaluation of a lambda special form only creates the function; it does
not apply it to any input(s).

For convenience, we shall refer to such functions as lambda functions. Thus, a lambda function is a function
that resulted from having evaluated a lambda special form.

Although evaluating a lambda special form only creates the corresponding function, it is necessary to describe
what that function would do if it ever were applied to input values. That is the subject of the next section.

9.3.3 Applying a lambda Function to Input Values
Up to this point, the only environment that we have considered has been the Global Environment. However, when
a lambda function is applied to inputs, the expressions in the function’s body are evaluated with respect to an
automatically-created local environment. As will be seen, the relationship between the Global Environment and
the new local environment is one of inclusion: the local environment can be thought of as a smaller room that sits
inside the Global Environment.

? For the purposes of this chapter, it is assumed that the lambda function was created by evaluating its
lambda special form with respect to the Global Environment, as has been the case in all of the preceding
examples.

Example 9.3.3: Applying the Squaring Function

Consider the expression, (lambda (x) (* x x)). As noted above, it evaluates to a Scheme function.
When this lambda function is applied to some input value, say 4, the following things happen:

• A local environment is created that contains a single entry in which the symbol x has the value 4.

• The expression, (* x x), which constitutes the body of the function, is evaluated with respect
to the newly created local environment. This means that: (1) any occurrence of the symbol x is
evaluated using the entry for x in the local environment, ignoring any entry for x that might exist
in the Global Environment; and (2) all other symbols are evaluated with respect to the Global
Environment. The evaluation of (* x x) therefore yields the result 16, because x evaluates to
4 in the local environment, and * evaluates to the built-in multiplication function in the Global
Environment.

• That value, 16, is taken to be the output value that results from applying the lambda function to
the input value 4.

This process is illustrated in Fig. 9.1.

Notice that expressions in the body of a function can refer to data that are stored in one of two places:

(1) the environment within which the function was created—in this case, the Global Environment; or

(2) the local environment that contains entries associated with the input parameters.

Example 9.3.4: Computing the Volume of a Sphere

You may recall that the volume of a sphere of radius, r, is given by the function f(r) = 4
3πr

3. Thus, for
example, the volume of a sphere of radius 1 is 4

3π; and the volume of a sphere of radius 2 is 32
3 π.

The following Interactions Window session first creates a global variable, pi, to hold the value
3.14159. It then defines a function, named sphere-volume. Finally, it applies this function to some
sample input values.
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...
...

+ addn. func.
* mult. func.
...

...

Global Environment

x 4

(* x x) ⇒ 16⇒ ⇒ ⇒

m
ult.func.

4 4

Local Environment

164

(lambda (x) (* x x))

Figure 9.1: Applying the function corresponding to (lambda (x) (* x x)) to the value 4

> (define pi 3.14159)
> (define sphere-volume (lambda (r) (* 4/3 pi r r r)))
> (sphere-volume 1)
4.188786666666666
> (sphere-volume 2)
33.51029333333333

Consider the evaluation of the expression, (sphere-volume 2). It involves the following steps:

• First, a local environment is set up containing a single entry in which the symbol r has the value 2.

• Next, the expression, (* 4/3 pi r r r), which constitutes the body of the function, is evalu-
ated with respect to that local environment. In the process, the * symbol evaluates to the built-in
multiplication function, 4/3 evaluates to itself, the symbol pi evaluates to 3.14159, and the sym-
bol r evaluates to 2. Applying the multiplication function to the values 4/3, 3.14159, 2, 2 and 2
yields the result: 33.51029333333333.

• Finally, the value 33.51029333333333 is reported as the output value generated by applying
the sphere-volume function to the input value 2.

Notice that in the second step, the value for r came from the local environment, whereas the values for *
and pi came from the Global Environment.

? When evaluating a symbol such as r or pi with respect to a local environment, if the symbol has an
entry in the local environment, that entry is used; otherwise, the symbol’s value is derived from the
Global Environment.

The evaluation of (sphere-volume 2) is illustrated in Fig. 9.2.
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...
...

* mult. func.
pi 3.14159
...

...

Global Environment

sphere-volume func.

r 2

(* 4/3 pi r r r) ⇒⇒ ⇒ ⇒ ⇒ ⇒ ⇒

m
ult.func.

4/3 3
.
1
4
1
5
9

2 2 2

Local Environment

35.51029333333333
2

Figure 9.2: Applying the sphere-volume function to the value 2

The following Interactions Window session (continuing from the one given above) illustrates that the
existence of a global variable named r has no effect on the local variable that also happens to be named
r. In contrast, changing the value of the global variable, pi, has disastrous effects! (That is one of many
reasons why the use of global variables should be very carefully restricted!)

> (define r 55)
> (sphere-volume 1)
4.188786666666666
> (sphere-volume 2)
33.51029333333333
> (define pi 100) ←− Yikes!!
> (sphere-volume 1) ←− Yikes!!
400/3

Example 9.3.5: More Complex Input Expressions

So far, the examples have involved simple input expressions such as 1 or 2. This example demonstrates
that complex input expressions can be handled without requiring any new evaluation tools. Consider the
following Interactions Window session:

> (define square (lambda (x) (* x x)))
> (square (+ 2 3))
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25
> (square (- 8 5))
9
> (square (square 10))
10000

The evaluation of the first expression simply defines a squaring function, as seen in previous examples. The
evaluation of the expression, (square (+ 2 3)), is done according to the Default Rule for evaluating
non-empty lists. In particular:

• The square symbol evaluates to the squaring function;

• The expression, (+ 2 3), evaluates to 5;

• The squaring function is applied to the input value 5, generating the output value 25.

Similar remarks apply to the evaluation of (square (- 8 5)) and (square (square 10)). In
each case, the input expressions, no matter how complex, are evaluated first to generate the corresponding
input values. For example, the evaluation of (square (square 10)) involves the following steps:

• The square symbol evaluates to the squaring function;

• The expression, (square 10), evaluates to 100;

• The squaring function is applied to 100, yielding the output value, 10000.

Notice that the evaluation of the input expression, (square 10), itself required using the Default Rule
for evaluating non-empty lists. In particular:

• The square symbol evaluates to the squaring function;

• The expression, 10, evaluations to 10; and

• The squaring function is applied to 10, yielding the output value 100.

Example 9.3.6

Here’s an example of a function that takes more than one input (i.e., parameter).

> (define discriminant
(lambda (a b c)

(- (* b b) (* 4 a c))))
> (discriminant 1 2 -4)
20
> (discriminant 1 0 -3)
12

Notice that the syntax of Scheme allows expressions to occupy multiple lines. This is quite useful when
writing longer expressions. DrScheme automatically indents sub-expressions to make longer expressions
easier to read. Hitting the tab key will automatically cause the current line to snap to the appropriate
amount of indentation.
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Differences Between Mathematical Notation and Lambda Notation

Recall that in a math class, you might define a function using an equation such as f(x) = x2. Later on, you might
apply that function to various inputs, using expressions such as f(3) = 9 or f(5) = 25.

In Scheme, we can use a lambda special form to define a function without giving it a name. For example,
we might evaluate (lambda (x) (* x x)) to create a squaring function. However, we cannot replace the
parameter x in that lambda expression by arbitrary expressions. For example, (lambda (3) (* 3 3)) is
malformed in Scheme. (Recall the rules of syntax for lambda expressions.) But we can see a similarity to the
common mathematical notation for applying functions to inputs as follows.

Example 9.3.7: lambda functions vs. mathematical functions

> (define f (lambda (x) (* x x)))
> (f 3)
9
> (f (+ 2 3))
25
> (f (f 10))
10000

The corresponding mathematical equations/expressions would be:

f(x) = x2

f(3) = 9

f(2 + 3) = 25

f(f(10)) = 10000

Example 9.3.8: A Lambda Expression with a Bigger Body

The following illustrates that a lambda expression can have more than one expression in its body.

> (define useless-function
(lambda (input)

input
(* input input)
(* input input input)
input
()))

> (useless-function 35)
()
> (useless-function 888)
()

In this case, the body of the function includes five expressions (i.e., everything after the parameter list).

? The semantics of Scheme stipulates that when a lambda function having multiple expressions in its
body is subsequently applied to input(s), the expressions in the body are evaluated sequentially, one
after the other.

? Furthermore, the value of the last expression in the body is taken to be the output value for the
function.
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Thus, in the above example, each of the expressions in the body is evaluated in turn, and the value of
the last expression (i.e., ()) serves as the output value. This function is kind of silly since the results of
evaluating the first four expressions in its body are thrown away.

? The only way that intermediate expressions in the body of a function could have any impact is if they
caused side effects.

Up to this point, the only function that we have seen that has side effects is the built-in printf function. It
displays the contents of a string in the Interactions Window. This is a harmless side effect that can be very useful.

9.4 Summary
This chapter introduced the lambda special form whose purpose is to enable a Scheme programmer to specify
functions. A lambda special form includes:

(1) the lambda symbol;

(2) a list of input parameters; and

(3) one or more expressions constituting the body of the function.

The result of evaluating a lambda special form is always a function. For example, the result of evaluating
(lambda (x) (* x x)) is a function whose sole input parameter is x, and whose body is (* x x).

In Scheme, the following are distinct:

• The function that is generated by evaluating a lambda special form;

• Any name(s) that might be given to that function; and

• The process of applying that function to input(s).

The define special form is used to give names to things, including functions. For example, the following
expression associates the squaring function with the name square.

(define square
(lambda (x)

(* x x)))

The application of this function to an input is handled by the evaluation of an expression such as (square 10),
which is carried out by the Default Rule for evaluating non-empty lists.

The application of a lambda function involves the creation of a local environment that contains one entry for
each input parameter. The input values to which the function is being applied become the values associated with
the corresponding input parameters in the local environment. For example, when applying the squaring function
to the input value 10, the input parameter x receives the value 10 in the local environment. Next, each expression
in the body of the function is evaluated with respect to that local environment. In particular, any symbol s that
must be evaluated is evaluated by looking first for a corresponding entry in the local environment; if no entry
for s is found there, then the Global Environment is checked. In other words, the local environment has higher
priority when evaluating symbols in the body of a lambda function. Thus, when evaluating (* x x) in the body
of the squaring function, x evaluates to 10, courtesy of the local environment, whereas * evaluates to the built-in
multiplication function courtesy of the Global Environment. Finally, the output obtained by evaluating the last
expression in the body of the function is taken to be the result of applying the function to the given input(s).
Thus, the output 100, obtained by evaluating (* x x), is taken to be the output value for the application of the
squaring function to the input value 10.

The parameter lists in a lambda special form may specify zero or more parameters, each represented by a
Scheme symbol. And the body of a lambda special form may include one or more expressions. However, it is
only reasonable to include more than one expression in the body of a function if the evaluation of those expressions
cause some side effects.
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Special Forms Introduced in this Chapter
lambda Used to specify functions of our own design.



Chapter 10

Some practicalities

This chapter introduces the following practicalities:

• Further capabilities of the built-in printf function. This function, which takes a string as one of its inputs,
can be used to display nicely formatted information in DrScheme’s Interactions Window. Its functionality
is similar to that of the format/print functions found in many programming languages.

• The built-in load function. This function causes the Scheme expressions in a specified file to be evaluated
as though they had been manually typed into the Interactions Window. As such, these expressions are
evaluated with respect to the Global Environment. In this way, a library of useful Scheme definitions can be
incorporated into your own program quite easily. The name of the file is specified by a string.

• Comments. A comment is a piece of syntax that DrScheme completely ignores. Comments are used by
programmers to help clarify—for people—what the program/code is supposed to do.

10.1 More Fun with the Built-in printf Function
Recall from Section 5.5 that the built-in printf function can be applied to strings to generate side-effect printing
in the Interactions Window, as illustrated below.

> (printf "you are amazing!")
you are amazing!

Unlike the input string "you are amazing!", which is a Scheme datum, the text displayed in the Interactions
Window is not a Scheme datum; instead, it is merely something that happens on the side. The output value
generated by the printf function is the void datum.

Escape sequences. In the above example, the printf function effectively copied the contents of the input
string into the Interactions Window verbatim. However, the printf function sometimes deviates from this
simple behavior. In particular, as the printf function walks through the input string, it reacts to a few special
character sequences in special ways. For example, it reacts to the character sequence, ˜%, by moving to a new
line in the Interactions Window (i.e., it interprets ˜% as a newline character). It also interprets \n as a newline
character. In addition, whenever it encounters the character sequence, ˜s, in the input string, the printf function
treats it as a place-holder for a piece of data to be displayed, as discussed in Example 10.1.1 below. Because the
character sequences ˜%, \n, and ˜s are not interpreted literally, but involve the printf function escaping from
a literal interpretation, they are frequently called escape sequences. (And the characters ˜ and \ that introduce
escape sequences are sometimes called escape characters.) Although the printf function can deal with a variety
of other escape sequences, these are the only ones that we’ll need for this course. Their use enables the printf
function to generate nicely formatted text in the Interactions Window. For this reason, the input string is frequently
called a format string—which explains the f in printf.

In summary, the printf function causes the contents of the format string (i.e., its first input) to be displayed
verbatim in the Interactions Window, except that:
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• the quotation marks are omitted;

• each instance of ˜% or \n is interpreted as a newline character and, thus, causes subsequent text to be
displayed on the next line in the Interactions Window; and

• each instance of the escape sequence, ˜s, is replaced by a character sequence representing the value of the
corresponding input expression.

Notice that if the format string contains n instances of ˜s, then there must be n input expressions following the
format string, as follows:

(printf format-string expr1 . . . exprn)

Example 10.1.1: Formatted printing with printf

The following Interactions Window session illustrates the use of the escape sequences ˜%, \n and ˜s by
the printf function.

> (printf "Hi there!\nBye there!")
Hi there!
Bye there!
> (printf "Oh, I get it!˜%This sentence begins on a new line!")
Oh, I get it!
This sentence begins on a new line!
> (printf "First thing: ˜s, second thing: ˜s˜%" (+ 2 3) (* 6 7))
First thing: 5, second thing: 42
> (printf "Line One!˜% Line Two!!˜% Line Three!!!˜%")
Line One!

Line Two!!
Line Three!!!

> (printf "First ===> ˜s, Second ===> ˜s, Third ===> ˜s˜%"
(+ 4 2) (- 9 6.3) (* 4 100))

First ===> 6, Second ===> 2.7, Third ===> 400
> (printf "A symbol: ˜s, a string: ˜s, a boolean: ˜s˜%"

’I-am-a-symbol
"I am a String!"
(> 4 2))

A symbol: I-am-a-symbol, a string: "I am a String!", a boolean: #t

Example 10.1.2: The printf function and the void datum

The following interaction demonstrates that the printf function generates the void datum as its output:

> (void? (printf "hi\n"))
hi
#t

In this example, the Default Rule for evaluating non-empty lists is used to evaluate the expression,
(void? (printf "hi\n")). First, each element of the list is evaluated:

• the void? symbol evaluates to the built-in void? function; and

• (printf "hi\n") evaluates to the void datum—while causing hi to be displayed in the Inter-
actions Window as a side effect.
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Next, the void datum is fed as input into the void? type-checker predicate, resulting in the output value
#t. Thus, hi is side-effect printing, while #t is the output value.

Although DrScheme does not normally display the void datum, we can force it to do so, as follows:

> (printf "Show us void: ˜s˜%" (void))
Show us void: #<void>

However, keep in mind that #<void> is not legal Scheme syntax. If you enter #<void> into the Interac-
tions Window, you’ll get a red error message!

Including multiple expressions within the body of a lambda function. Recall that the body of a lambda
function may contain multiple expressions. When such a function is called, each of the expressions in the body is
evaluated in turn. However, it is only the value of the last expression in the body that determines the output value
for the function call. Since the output values of earlier expressions are ignored, it only makes sense to include
multiple expressions in the body of a function if some of those expressions generate side effects. The following
example considers a function whose body contains expressions that generate side-effect printing.

Example 10.1.3

The following lambda function, called verbose-func, contains multiple expressions in its body. When
the verbose-func is called, each expression in its body is evaluated. The first four expressions cause
the built-in printf function to be called, thereby generating several lines of side-effect printing in the In-
teractions Window. However, it is the evaluation of the last expression in the function’s body that generates
an output value for the function call.

> (define verbose-func
(lambda (a b)

(printf "Hi. This is verbose-func!˜%")
(printf "The value of the first input is: ˜s˜%" a)
(printf "The value of the second input is: ˜s˜%" b)
(printf "Their product is:˜%")
(* a b)))

> (verbose-func 3 4)
Hi. This is verbose-func!
The value of the first input is: 3
The value of the second input is: 4
Their product is:
12
>

In this case, the output value of the function call is twelve, which DrScheme displays in one color; the
previous four lines of text are just side-effect printing, which DrScheme displays in a different color.

? Part 1 of this book explores how much can be accomplished without using side effects. Therefore, most of
the functions we write will include only a single expression in the body. However, we will sometimes use
the printf function to generate useful side-effect printing in the Interactions Window.
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Example 10.1.4: Defining a useful tester function

The printf function can be used to define a tester function that will greatly facilitate the testing of
whatever Scheme function we happen to be creating. The tester function can also be used to test our
understanding of how arbitrary Scheme data get evaluated.

(define tester
(lambda (datum)

(printf "˜s ==> " datum)
(eval datum)))

The tester function takes any Scheme datum as its input. As a side effect, it prints out a representation
of that datum in the Interactions Window. For its output value, it simply evaluates the input datum. The
following Interactions Window session demonstrates its use.

> (tester ’(+ 1 2))
(+ 1 2) ==> 3
> (tester (+ 1 2))
3 ==> 3
> (tester ’+)
+ ==> #<primitive:+>
> (tester +)
#<primitive:+> ==> #<primitive:+>

These examples demonstrate that the tester function is most useful when the quote special form is
used to shield the desired input expression from evaluation. For example, notice the difference between
the evaluations of (tester ’(+ 1 2)) and (tester (+ 1 2)). In the first case, (+ 1 2) is
shielded from evaluation by the quote special form; thus, the list (+ 1 2) is fed as input to the tester
function. That is why (+ 1 2) is printed out in the Interactions Window before the arrow. After that
side-effect printing, the eval function is then used to explicitly evaluate the list (+ 1 2), generating
the output value 3. Since the formatting string given to printf does not include a newline character, the
side-effect printing and the output value are both displayed on the same line.

? The tester function is one of the rare cases where the built-in eval function is explicitly invoked.

10.2 The Built-in load Function
Scheme includes a built-in load function that causes all of the Scheme expressions in a specified file to be
evaluated in an Interactions Window session. Here’s the contract:

Name: load
Input: filename, a string
Output: The result of evaluating the last expression in the file named filename.
Side Effect: Whatever side effects result from evaluating all of the expressions in the file named filename.

Example 10.2.1

Suppose the file "test.txt" contains the following expressions:

(printf "Loading test.txt!!")

(define tester
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(lambda (datum)
(printf "˜s ==> " datum)
(eval datum)))

(define x 34)

Then the following Interactions Window session could ensue:

> x
BUG! reference to undefined identifier: x
> tester
BUG! reference to undefined identifier: tester
> (load "test.txt")
Loading test.txt!!
> x
34
> (tester ’x)
x ==> 34

Notice that the first attempts to evaluate tester and x generated errors because there were not yet
any entries for these symbols in the Global Environment. However, after loading the file test.txt,
subsequent attempts to evaluate x and to use tester succeed.

This example demonstrates that useful function definitions can be conveniently stored in a file, to be loaded
whenever needed.

? The Run button on DrScheme’s toolbar is similar to the load function, except that it causes the Scheme
expressions currently residing in the Definitions Window to be evaluated within a fresh Interactions Window
session.

10.3 Comments
In Scheme programs, the semi-colon character is used to initiate comments. The text that constitutes a comment
is ignored by DrScheme, as illustrated by the following example.

Example 10.3.1

(define tester
(lambda (datum)

;; Print (the value of) DATUM -- without a newline character
(printf "˜s ==> " datum)
;; Then explicitly evaluate (the value of) DATUM
(eval datum)))

;; Sample TESTER expressions
;; -----------------------------

(tester ’(+ 2 3))
(tester (+ 2 3))

Evaluating the above code in the Interactions Window would have the same result as evaluating the fol-
lowing, uncommented code:
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(define tester
(lambda (datum)

(printf "˜s ==> " datum)
(eval datum)))

(tester ’(+ 2 3))
(tester (+ 2 3))

The purpose of comments is to make a Scheme program easier for people to understand. DrScheme ignores the
comments completely.

Contracts in Scheme programs. One of the most important uses of comments is to enable a Scheme program to
include an explicit contract for each function it defines. The following example illustrates the format for contracts
that will be used for the rest of the course.

Example 10.3.2: A contract for the squaring function

The following comment block constitutes a contract for the squaring function seen in Example 9.2.1.

;; SQUARE
;; ------------------------------------------
;; INPUT: X, a number
;; OUTPUT: The value X*X (i.e., X squared)

My personal convention is to use upper-case letters for the names of the function and its inputs, while the
actual Scheme code uses lower-case letters.

? Aside from this difference, the names of the function and its inputs in the contract should match the
corresponding names in the actual function definition.

By convention, if a function does not generate any side effects, then the contract need not mention side
effects.

Example 10.3.3: A contract for the tester function

The following code fragment includes a contract for the tester function followed by the actual function
definition. Note that a blank line should separate the contract from the function definition.

;; TESTER
;; ----------------------------------------------------------
;; INPUT: DATUM, any Scheme datum
;; OUTPUT: The result of evaluating (the value of) DATUM
;; SIDE EFFECT: Displays (the value of) DATUM *before*
;; evaluating it

(define tester
(lambda (datum)

;; Display (the value of) DATUM
(printf "˜s ==> " datum)
;; Evaluate (the value of) DATUM
(eval datum)))
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? To avoid being overly cumbersome, contracts may intentionally blur the distinction between the names of
input parameters—which are symbols—and their values—which can be anything.

Example 10.3.4: Revised contract for tester

Instead of (correctly) saying that the tester function displays (the value of) datum before evaluating
(the value of) datum, a typical contract might say that the tester function displays datum before
evaluating it. (Even though the symbol datum is not what is displayed by tester!) In effect, the
contract is using the symbol datum to refer to its value in the local environment, much as a person uses
the name Barack Obama to refer to the 44th president of the United States. Of course, you should never
let the true distinction between a symbol and its value stray too far from conscious awareness!

;; TESTER
;; -------------------------------------------------------
;; INPUT: DATUM, any Scheme datum
;; OUTPUT: The result of evaluating DATUM
;; SIDE EFFECT: Displays DATUM *before* evaluating it

(define tester
(lambda (datum)

;; Display DATUM
(printf "˜s ==> " datum)
;; Evaluate DATUM
(eval datum)))

10.4 Summary
This chapter introduced the built-in printf function, the built-in load function, and comments.

Almost any character sequence that begins and ends with double quotes denotes a string datum in Scheme.
(The exceptions (e.g., "hi\") involve escape sequences (e.g., \") that effectively capture the final double quote.
They need not concern us.) For example, "the brown dog\n" and "i am a fox" both denote strings in
Scheme.

The built-in printf function has the useful side effect of displaying text in the Interactions Window. The
printf function takes a string—sometimes called a formatting string—as its first input. That string may include
escape sequences such as ˜%, \n and ˜s that are interpreted in special ways by the printf function. In partic-
ular, the printf function interprets each character of the formatting string literally, except that ˜% and \n are
interpreted as newline characters, and ˜s is interpreted as a placeholder for a piece of data. For each occurrence
of ˜s in the formatting string, there must be a corresponding additional input to printf. Thus, if the formatting
string includes n occurrences of ˜s, then there must be n additional inputs to printf after the formatting string,
as illustrated below:

> (printf "One: ˜s, Two: ˜s, Three: ˜s˜%" 1 2 (+ 1 2))
One: 1, Two: 2, Three: 3

Notice that the double quotes from the formatting string are not displayed in the Interactions Window.
The tester function was defined to use printf to display a datum before evaluation, and then to explicitly

use the built-in eval function to evaluate that datum. When using the tester function, input expressions are
typically quoted to shield them from evaluation by the Default Rule, as illustrated below:

> (tester ’(+ 1 2))
(+ 1 2) ==> 3
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The built-in load function can be used to load the contents of a file automatically, instead of having to
manually type its contents directly into the Interactions Window. The input to the load function is a string
representing the name of the file. For example, if myfile.txt contains a bunch of function definitions, then
the expression (load "myfile.txt") would cause those function definitions to be evaluated by DrScheme
just as though they had been manually typed into the Interactions Window. Those functions could then be used
during the remainder of the Interactions Window session. DrScheme’s Run button is similar, except that it loads
the expressions currently residing in the Definitions Window into the Interactions Window.

Finally, the semi-colon is a character that is used to introduce comments in Scheme. In particular, any sequence
of characters that starts with a semi-colon and continues to the end of the line is completely ignored by DrScheme.
An effective programmer uses concise comments to explain what their code is (supposed to be) doing. One
important use of comments is to provide a contract for each function that is defined in a given program.

Built-in Functions Introduced in this Chapter

printf To do side-effect printing in the Interactions Window

load To load the contents of a file



Chapter 11

Conditional Expressions I

Solving problems often involves making decisions or choosing from a set of alternatives. For example, to deter-
mine the appropriate letter grade for a given exam score, one might reason as follows: “If the grade is at least 90,
output A; otherwise, if the grade is at least 80, output B, and so on.” The simplest kind of programming decision
is a binary decision (i.e., choosing one of two alternatives). In English, a binary decision can be represented by a
sentence of the form, “If some condition holds, then do one thing; otherwise, do something else.” For example:
“If it is raining, take an umbrella; otherwise, wear sunglasses.” In this case, the condition is whether or not it is
raining; the then clause is “take an umbrella”; and the else clause is “wear sunglasses”.

In Scheme, programmers use the if special form to make binary decisions. The if special form is an example
of a conditional expression. Like many conditional sentences in English, an if special form has a condition, a
then clause, and an else clause. For example, (if (> x y) x y) is an instance of an if special form, where
the condition is (> x y), the then clause is x, and the else clause is y. Like any special form, an if special
form is evaluated in its own special way. Importantly, the evaluation of an if special form depends upon whether
the condition evaluates to true.

Although a single if special form can only make a binary decision, multiple if special forms can be nested
to, in effect, make an n-ary decision (i.e., a decision to select one from among n choices), as in: “If the grade is at
least 90, give an A; otherwise, if the grade is at least 80, give a B; otherwise, if the grade is at least 70, . . . .”

? The evaluation of the if special form is lazy in the sense that only the computations needed to ascertain the
final value are actually performed.

This chapter also introduces the when special form, which is useful in cases where an else expression is not
needed. Chapter ?? introduces the cond special form, which facilitates making n-ary decisions.

11.1 The if Special Form

We begin by introducing the if special form under the assumption that its condition evaluates to an actual boolean
value (i.e., #t or #f). Afterward, we will relax that assumption.

The syntax of an if special form is as follows:

(if condExpr thenExpr elseExpr )

where:

• condExpr is a condition (i.e., an expression that evaluates to #t or #f); and

• thenExpr and elseExpr are any Scheme expressions.
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Example 11.1.1

The following expressions are legal examples of the if special form:

(if (> 2 4) (* 8 2) (* 6 5))

(if (> 4 2) ’then ’else)

(if #f "then" "else")

The semantics of the if special form stipulates that it is evaluated as follows.

• First, the condition, condExpr, is evaluated. Then, depending on its value, one of the following will happen.

◦ Case 1: condExpr evaluates to #t. In this case, thenExpr is evaluated
—and the value of the if special form is whatever thenExpr evaluates to.

◦ Case 2: condExpr evaluates to #f. In this case, elseExpr is evaluated
—and the value of the if special form is whatever elseExpr evaluates to.

Notice that the condition, condExpr, is always evaluated; however, after that, one and only one of the remaining
expressions, thenExpr or elseExpr, is evaluated. We say that the evaluation of the if special form is lazy, in the
sense that it only evaluates the expressions needed to compute the value of the entire if expression. For example,
if the condition evaluates to #t, then the value of the else expression is not needed and, thus, it is not computed.
This kind of selective evaluation is available to special forms because each special form specifies its own mode of
evaluation; however, this kind of selective evaluation is not available to the Default Rule, which always evaluates
every item in a non-empty list.

Example 11.1.2

The following interactions demonstrate the evaluation of the if special forms seen earlier.

> (if (> 2 4) (* 8 2) (* 6 5))
30
> (if (> 4 2) ’then ’else)
then
> (if #f "then" "else")
"else"

In the first expression, the condition, (> 2 4), evaluates to #f. Thus, the else expression, (* 6 5), is
evaluated. Its value, 30, is the value of the entire if expression.

In the second expression, the condition, (> 4 2), evaluates to #t. Thus, the then expression, ’then,
is evaluated. Its value, then, is the value of the entire if expression.

In the third expression, the condition, #f, evalutes to #f. Thus, the else expression, "else", is
evaluated. Its value, "else", is the value of the entire if expression. (Recall that strings evaluate to
themselves.)

Although the preceding examples illustrate the semantics of the if special form, they are kind of silly because
in each case the condition has a determined value and, therefore, the entire if expression seems unnecessary.
That is true. However, as the following example demonstrates, an if expression that appears in the body of a
function can involve conditions that depend on the values of one or more input parameters—and those values are
not known until the function is applied to inputs.
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Example 11.1.3: Using an if expression in the body of a function

Below, a function, how-big, is defined. If given a number less than 10, its output is the symbol, small;
otherwise, its output is the symbol, big.

;; HOW-BIG
;; -------------------------------------------------------
;; INPUT: NUM, a number
;; OUTPUT: The symbol SMALL, if NUM is less than 10;
;; Otherwise, the symbol BIG.

(define how-big
(lambda (num)

(if (< num 10)
’small
’big)))

The following interactions demonstrate its behavior:

> (how-big 5)
small
> (how-big 102)
big

Notice that the result of evaluating the condition, (< num 10), depends on the value of num in the local
environment, which is not known at the time the function is specified by the programmer; instead, the value
of num is known only when the function how-big is eventually applied to some input.

? The values of the input parameters for a function cannot be known when the programmer is writing the body
of the function. Therefore, if the programmer wants the function to do different things for different inputs,
the if special form can be quite useful.

In-Class Problem 11.1.1

Define a function, called sign, that satisfies the following contract.

;; SIGN
;; ------------------------------------------------
;; INPUT: X, a number
;; OUTPUT: 1, if X > 0; 0, if X = 0; -1, if X < 0

Here are some examples of the desired behavior:

> (sign 3)
1
> (sign 0)
0
> (sign -4.2)
-1

Hint: Start by defining a function that outputs 1 if x > 0, and 0 in all other cases.
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The non-strict version of the if special form. In the strict version of the if special form, the condition must
be an expression that evaluates to a boolean (i.e., either #t or #f). In the non-strict version, the condition can be
any Scheme expression, as illustrated below.

Example 11.1.4

The following are legal instances of the if special form:

(if 72 "yup" "nope")

(if "condie" "yup" "nope")

(if (* 3 4) ’hello ’goodbye)

The semantics of the non-strict version of the if special form is governed by the following rule:

? When interpreting the value of the condition, anything other than #f counts as true (i.e., #f is the only
Scheme datum that counts as false).

Example 11.1.5

The following Interactions Window session demonstrates the evaluation of the non-strict if expressions
seen earlier.

> (if 72 "yup" "nope")
"yup"
> (if "condie" "yup" "nope")
"yup"
> (if (* 3 4) ’hello ’goodbye)
hello

In each case, the condition being tested evaluates to a non-boolean value. Since #f is the only thing that
counts as false, the conditions in these examples all count as true. Thus, in each case, the then expression
is evaluated—and the value of the then expression is the value of the entire if expression.

11.2 Simplifying Conditional Expressions
Conditional expressions can be used in many ways to enable Scheme functions to make finely tuned decisions
amongst any number of cases. Although conditional expressions stated in English can guide your programming
efforts, they can sometimes lead to solutions that are more complex than they need to be. That’s okay! Once your
function is working, you can focus attention on how to simplify the expressions it uses. In addition, as you gain
more practice, the simpler expressions may come to mind sooner in the programming process.

At first, we restrict attention to expressions that evaluate to boolean values—that is, either #t or #f. Afterward,
we consider expressions that may evaluate to any type of Scheme data, but subject to the interpretation that
anything other than #f counts as true, while only #f counts as false.

Definition 11.1: Equivalent boolean conditions

Suppose that boolOne and boolTwo are two boolean conditions (i.e., expressions that evaluate to booleans
no matter what environment they are evaluated in). The expressions, boolOne and boolTwo are called
equivalent if, whenever they are evaluated with respect to the same environment, the resulting boolean
values are the same. In other words, boolOne evaluates to #t if and only if boolTwo evaluates to #t.
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Example 11.2.1: Simplifying expressions involving eq?

Suppose that boolie is a symbol whose value is a boolean (i.e., either boolean true or boolean false).
Then, according to the above definition, the expression, (eq? boolie #t), is equivalent to the much
simpler expression, boolie, as demonstrated below.

> (define boolie #t)
> boolie
#t
> (eq? boolie #t)
#t
> (define bully #f)
> bully
#f
> (eq? bully #t)
#f

A similar simplification also works for any expression that evaluates to a boolean value:

> (eq? (> 5 2) #t)
#t
> (> 5 2)
#t
> (eq? (= 3 2) #t)
#f
> (= 3 2)
#f

Similarly, if boolie is any expression that evaluates to a boolean, then an if expression whose condition
is (eq? boolie #t) can also be simplified.

> (define xyz #t)
> (if (eq? xyz #t) ’yes ’no)
yes
> (if xyz ’yes ’no)
yes
> (define abc #f)
> (if (eq? abc #t) ’yes ’no)
no
> (if abc ’yes ’no)
no
> (if (= 3 2) ’yes ’no)
no
> (if (> 5 2) ’yes ’no)
yes

? In summary, if boolie is any expression that evaluates to a boolean, then the following simplifications yield
equivalent expressions:

(eq? boolie #t) ; boolie

(if (eq? boolie #t) thenExpr elseExpr) ; (if boolie thenExpr elseExpr)
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Furthermore, in view of the non-strict version of the if special form, the latter simplification works for any
expression boolie, whether it evaluates to a boolean or not.

Example 11.2.2: Another way of simplifying if expressions

According Defn. 11.1, the expression, (if (> x y) #t #f), is equivalent to the simpler expression,
(> x y). The following interactions demonstrate the equivalence in two different environments: one
where x > y, and one where x < y.

> (define x 32) ←− Setting up an environment where x > y
> (define y 4)
> (if (> x y) #t #f)
#t
> (> x y)
#t

> (define x 32) ←− Setting up an environment where x < y
> (define y 1000)
> (if (> x y) #t #f)
#f
> (> x y)
#f

? More generally, if boolCond is any boolean condition, then the following simplification yields an equivalent
expression:

(if boolCond #t #f) ; boolCond

So, if you ever find yourself writing an if expression whose then and else clauses are #t and #f, respectively,
consider making the above simplification.

Next, we consider the same simplification, but applied to conditions whose evaluations do not necessarily yield
boolean values. In such cases, the simplification yields equivalent expressions—as long as we consider anything
other than #f to count as true, and #f to be the only thing that counts as false.

Example 11.2.3: Simplifying if expressions: non-strict truth values

> (if ’happy #t #f) ←− ’happy ⇒ happy, which counts as true
#t
> ’happy
happy
> (if #f #t #f) ←− The condition #f ⇒ #f, which counts as false
#f
> #f
#f

In the first example, the condition ’happy evaluates to the symbol happy, which counts as true. There-
fore, the if expression evaluates to #t, which is the result of evaluating its then expression. In the second
example, the expression ’happy evaluates to the symbol happy, which counts as true. Thus, the expres-
sions, (if ’happy #t #f) and ’happy, are equivalent in the sense that they both evaluate to things
that count as true. The third and fourth lines demonstrate the case where the condition of an if expression
evaluates to #f.
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In-Class Problem 11.2.1

Define a function, called convert-to-boolean, that takes any Scheme datum as its input. It should
return #t as its output if the input is anything that counts as true; otherwise, it should return #f, as
illustrated below.

> (convert-to-boolean #t)
#t
> (convert-to-boolean (+ 3 2))
#t
> (convert-to-boolean #f)
#f

Hint: Use an unsimplified conditional expression!

11.3 The when Special Form
In certain programming circumstances, you may want an if special form that does not need an else case. The
when special form is provided to handle such circumstances. In its simplest form, the when special form has the
following syntax:

(when condExpr thenExpr)

Such an expression is evaluated as follows. First, the condition, condExpr, is evaluated. If it evaluates to #t
(or something that counts as true), then thenExpr is evaluated, and its value is the value for the entire when
expression. However, if condExpr evaluates to #f, then thenExpr is skipped, and the value of the entire
when expression is void.

Example 11.3.1

The following interactions demonstrate the semantics of the simplest use of the when special form.

> (when #t 3)
3
> (when (> 3 2) (* 4 5))
20
> (when (> 2 3) (* 4 5))
> (void? (when #f 3))
#t

Like the if special form, the when special form is most useful when used within the body of a function.

Example 11.3.2

Consider the following version of the how-big function that takes an extra input, verbose?. When
verbose? is true, the function prints out some information about the inputs; otherwise, it doesn’t print
out anything.

;; HOW-BIG-V2
;; ------------------------------------------------------
;; INPUTS: NUM, a number
;; VERBOSE?, a boolean
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;; OUTPUT: A symbol, either SMALL or BIG, depending on
;; whether NUM < 10
;; SIDE EFFECT: When VERBOSE? is true, it prints out
;; information about the inputs.

(define how-big-v2
(lambda (num verbose?)

;; Do some side-effect printing?
(when verbose?

(printf "Inside HOW-BIG-V2: NUM = ˜s and VERBOSE? = ˜s˜%"
num verbose?))

;; Output value
(if (< num 10)

’small
’big)))

Here are some examples of its behavior.

> (how-big-v2 3 #t)
Inside HOW-BIG-V2: NUM = 3 and VERBOSE? = #t
small
> (how-big-v2 3 #f)
small
> (how-big-v2 15 #t)
Inside HOW-BIG-V2: NUM = 15 and VERBOSE? = #t
big
> (how-big-v2 15 #f)
big

? Because the when special form can evaluate to void (e.g., when its condition evaluates to #f), when should
not be used to generate output values. Instead, like in the preceding example, when should only be used to
generate helpful side effects (e.g., side-effect printing).

Later on, in Part II of the book, when we discuss destructive programming, we will see additional uses of the
when special form.

More general version of the when special form. Because the when special form never includes an else ex-
pression, it can include multiple then expressions in its body. In this way, the body of a when expression is similar
to the body of a lambda function. In general, the when special form has the following syntax:

(when condExpr
expr1

expr2

. . .
exprn)

The semantics of the when special form stipulates that it is evaluated as follows. First, the expression, condExpr,
is evaluated. If it evaluates to something that counts as true, then the expressions, expr1, . . . , exprn, are
evaluated in turn, and the value of the last expression serves as the value of the entire when expression. However,
if condExpr evaluates to #f, then the subsidiary expressions, expr1, . . . , exprn, are skipped, and the entire
when expression simply evaluates to void.
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In-Class Problem 11.3.1

Modify the how-big-v2 function so that it includes a when expression that has multiple printf ex-
pressions in its body.

11.4 Summary
This chapter introduced the if special form for making binary decisions. When evaluating conditions, the if spe-
cial form accommodates non-strict truth values. In particular, anything other than #f counts as true. Equivalently,
only #f counts as false.

An if special form has the form, (if condExpr thenExpr elseExpr). An if special form is eval-
uated as follows. First, the condition, condExpr, is evaluated. If it evaluates to #t (or something that counts as
true), then the then expression, thenExpr, is evaluated, and its value is taken to be the value of the entire if
expression. However, if the condition evaluates to #f, then the else expression, elseExpr, is evaluated, and its
value is taken to be the value of the entire if expression. Thus, either the then expression or the else expression
is evaluated, but never both.

An if expression whose then expression is #t, and whose else expression is #f can be simplified. For
example, (if (> x y) #t #f) is equivalent to (> x y).

A when expression is useful in cases where no else expression is needed. For example, a when expression can
be used to generate side-effect printing in certain cases, but not others. Because a when expression can evaluate
to void, it should not be used to generate an output value!

Special Forms Introduced in this Chapter

if For making binary decisions

when For cases where an else expression is not needed
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