Part II

Destructive Programming in Scheme
Chapter 17

Iteration

Like recursion, iteration is a technique that enables a programmer to make the computer do things repetitively. However, unlike recursion, iteration typically involves destructive programming. This chapter presents several special forms that facilitate incorporating iteration in Scheme programs. The `set!` special form causes the value of a variable to be destructively modified. The `while` special form iteratively evaluates the expressions in its body as long as some condition holds. (Destructive programming is required if a condition that initially evaluates to `true` is eventually going to evaluate to `false`.) The `dotimes` and `dolist` special forms, respectively, automate kinds of iteration that are analogous to numerical and list-based recursion.

17.1 The `set!` Special Form

The purpose of the `set!` special form is to destructively modify (i.e., change) the value of a variable (i.e., the value associated with a symbol in some environment). After using `set!` to change the value of a variable, its previous value will be lost forever—unless it was saved elsewhere prior to setting the new value.

The syntax of the `set!` special form. The `set!` special form has the following syntax:

```
(set! var newVal)
```

where `var` is any symbol expression, and `newVal` can be any Scheme expression. Each of the following are legal instances of the `set!` special form:

```
(set! x 3)
(set! myVar (* 8 10))
(set! yourVar (member 3 '(1 2 3 4 5)))
```

The semantics of the `set!` special form. Like most Scheme expressions, the evaluation of a `set!` special form depends on the environment in which it is being evaluated. The simplest case is that of a `set!` special form being evaluated with respect to the Global Environment. In that case, the evaluation proceeds as follows.

1. `newVal` is evaluated in the Global Environment, generating some Scheme datum D.
2. D is inserted as the new value for `var` in the Global Environment.
3. The `set!` special form itself evaluates to `void` (i.e., no value).
Example 17.1.1: The set! special form

> (define x 100) ← Create a global variable x with value 100
> x
100
> (set! x (* 5 5)) ← Change the value associated with x
> x
25
> (set! y 50) ← No can do! There is no entry for a variable named y.
Error!

As the last example demonstrates, DrScheme will report an error if you try to use set! for a symbol that has no entry in the relevant environment.

Next, suppose that (set! var newVal) is being evaluated with respect to a local environment \(\mathcal{E}_1 \) that is nested directly inside the Global Environment (i.e., \(\mathcal{E}_1 \subseteq \mathcal{E}_0 \)). In this case, newVal will be evaluated with respect to the environment \(\mathcal{E}_1 \), generating some Scheme datum \(D \). Next, the appropriate variable named var must be located. If there is an entry for the symbol var in the local environment \(\mathcal{E}_1 \), then \(D \) will be inserted as the value for var in that entry. Otherwise, \(D \) will be inserted as the value for var in the Global Environment. (If neither environment contains an entry for var, then attempting to use set! to change its value would cause an error.)

Example 17.1.2: Using set! within a local environment

The following interactions begin by creating global variables named x and y, and then using a let to create a local variable named x.

> (define x ‘xxx)
> (define y ‘yyy)
> (let ((x 0))
 (set! x ‘newX)
 (set! y ‘newY)
 (list x y))
(newX newY)
In the body of the `let`, the two `set!` expressions are evaluated with respect to the local environment, as illustrated in Fig. 17.1. Because that local environment has an entry for `x`, the expression `(set! x 'newX)` changes the value of `x` in the local environment. In contrast, there is no entry for `y` in the local environment; therefore, the expression `(set! y 'newY)` changes the value of `y` in the Global Environment. Note that the list generated as the output value for the `let` expression contains the new values for the local variable `x` and the global variable `y`. Finally, evaluating `x` in the Global Environment shows that the global variable `x` has not been affected, whereas the global variable `y` has a new value.

More generally, suppose that `(set! var newVal)` is being evaluated with respect to an environment \(\mathcal{E}_n \) that is nested inside other environments, as follows: \(\mathcal{E}_n \subset \mathcal{E}_{n-1} \subset \ldots \subset \mathcal{E}_2 \subset \mathcal{E}_1 \subset \mathcal{E}_0 \). The following steps are carried out:

1. The expression `newVal` is evaluated with respect to the environment \(\mathcal{E}_n \), generating some datum \(D \).
2. The environments, \(\mathcal{E}_n, \mathcal{E}_{n-1}, \ldots, \mathcal{E}_0 \), are scanned, in order, to find the first one that contains an entry for `var`. Call that environment \(\mathcal{E}_j \).
3. \(D \) is inserted as the new value for `var` in the environment \(\mathcal{E}_j \).
4. The `set!` special form itself evaluates to `void`.

Example 17.1.3: Using `set!` in deeply nested environments

Consider the following multiply nested `let` expressions. As illustrated in Fig. 17.2, each of the first three `let` expressions creates a local environment with a variable named `x`. The fourth `let` creates a local environment with a variable named `w`. The `set!` special form is evaluated with respect to the innermost local environment, \(\mathcal{E}_4 \), but ends up changing the value of `x` in the environment, \(\mathcal{E}_3 \), because that is the ancestor environment that is closest to \(\mathcal{E}_4 \) that contains a variable named `x`.

```
  > (let ((x 10)) ;; Environment \( \mathcal{E}_1 \)
      (let ((x 20)) ;; Environment \( \mathcal{E}_2 \)
        (let ((x 30)) ;; Environment \( \mathcal{E}_3 \)
          (let ((w 40)) ;; Environment \( \mathcal{E}_4 \)
            (printf "Evaluating x in env. E4 before: \"A˜\%\" x)\n               (set! x 99)
            Evaluating x in env. E4 after: 99
            Evaluating x in env. E3 after: 99
            Evaluating x in env. E2 after: 20
            Evaluating x in env. E1 after: 10
```

Notice that there is no way to use `set!` in environments \(\mathcal{E}_4 \) or \(\mathcal{E}_3 \) to change the value of the variable named `x` in either \(\mathcal{E}_2 \) or \(\mathcal{E}_1 \), because those variables are effectively blocked by the presence of the variable named `x` in \(\mathcal{E}_3 \).
Although it is important to understand which variable is affected when a `set!` special form is evaluated in a particular environment, a programmer typically avoids difficult cases by not having multiple variables with the same name in different environments.

* What now? Okay, so we can use `set!` to change the value of a variable. How can we use that capability to our advantage? The next section introduces the `while` special form which, together with `set!`, enables a kind of computation called *iteration* that can be a convenient alternative to recursion.

17.2 The `while` Special Form

The purpose of the `while` special form is to enable a kind of *looping* behavior called *iteration*. A typical example might be glossed as: “As long as (while) some condition Condy holds, do some action Acty. The semantics for this example could be summarized as follows:

1. Evaluate the condition Condy.
2. If Condy evaluates to `true` (or something that counts as true) then:
 1. Do the action Acty and go back to Step 1;
 2. Otherwise, stop.

For example, Condy might be the condition “the value of x is positive”, and Acty might be the compound action “first print out the value of x; then decrease x’s value by one.” As this example suggests, the `while` special form only makes sense in the context of destructive programming because, without destructive programming, the condition Condy would always evaluate to the same thing. In particular, in the context of non-destructive programming, if Condy evaluated to `true` in Step 1, then it would forever evaluate to `true`, leading to a situation where the action Acty would be repeated forever. However, as in the example, if the value of x decreases by one on each *iteration*, then the condition might eventually evaluate to `false`.

* Acty is the action that is done iteratively. Each doing of Step 3 is called an *iteration*.
The syntax of the `while` special form. The `while` special form has the following syntax:

```
(while condExpr
    expr1
    expr2
    ...
    exprk)
```

where `condExpr` is the condition (a.k.a., Condy); and the expressions, `expr1`, ..., `exprk`, together constitute the body (a.k.a., the compound action Acty). Notice that the syntax of the `while` special form is identical to that of the `when` special form—except for its name, of course. The essential difference is in the semantics.

The semantics of the `while` special form. A `while` special form is evaluated as follows:

1. Evaluate `condExpr`.
2. If `condExpr` evaluates to `true` (or something that counts as true),
3. Then evaluate each of the expressions, `expr1`, ..., `exprk`, in order, then go back to Step 1.
4. Otherwise, return `void` as the output of the `while` expression.

Note that the only way out of a `while` loop is via Step 4. Hence, a `while` special form always evaluates to `void`—unless the condition stays `true` forever, leading to an infinite loop.

Example 17.2.1

The following interactions demonstrate that:

1. The expressions in the body of a `while` may be evaluated zero times, and
2. A `while` expression evaluates to `void`.

```
> (while #f (printf "hi!"))                   ← Body evaluated zero times
#t
> (void? (while #f (printf "hi!")))          ← The while expr. evaluates to void
#t
```

Example 17.2.2: A typical `while` loop

This example illustrates how `let`, `while` and `set!` can be combined to create a useful `while` loop.

```
> (let ((counter 0))
    (while (< counter 4)
      (printf "counter = ~A~%" counter)
      ;; Increment the value of COUNTER
      (set! counter (+ counter 1)))
    ;; after the WHILE:
    counter)
counter = 0
counter = 1
counter = 2
counter = 3
4
```

In this example, the `let` special form creates a local environment in which the variable `counter` has
an initial value of 0. As long as the value of counter is less than 4, the expressions in the body of the while are evaluated, leading to side-effect printing. In addition, on each iteration, the value of counter is incremented by one. As a result, the condition (< counter 4) will eventually evaluate to #f, stopping the loop. Notice that after the while loop completes, counter has the value 4 (i.e., the value that caused the condition (< counter 4) to become false).

* If you forget to modify the value of a counter variable in a while loop, then the condition that controls the while loop may forever evaluate to #t, resulting in an infinite loop. Whoops!

Example 17.2.3: Summing numbers iteratively

The following combination of let, while and set! computes the sum of the numbers from 1 to 100. Notice the use of an accumulator variable whose value is destructively modified on each iteration.

```scheme
> (let ((counter 0) (acc 0))
  (while (< counter 100)
    ;; accumulate the current value of counter
    (set! acc (+ acc counter))
    ;; increment the value of counter
    (set! counter (+ counter 1)))
  ;; After the WHILE loop: the accumulator has the answer
  acc)
5050
```

In-Class Problem 17.2.1

Define a function, called sum-iter, that takes a positive integer n as its only input and returns as its output the sum of the numbers from 1 to n. Define another function, called facty-iter, that takes a positive integer n as its only input and returns as its output the factorial of n (i.e., the product of the numbers from 1 to n). For each function, use let, while and set!, as demonstrated in the previous example, to implement the desired iteration. Here are some examples of the desired behavior.

```scheme
> (sum-iter 4)
10
> (facty-iter 4)
24
```

In-Class Problem 17.2.2: An iterative version of transfer-all

Recall the accumulator-based, tail-recursive transfer-all function from Example 16.4.3. Define an iterative version of this function, called transfer-all-iter. Your function should not be recursive; instead, it should use let, while and set!, to iteratively transfer all of the elements of its first input onto its second input.
In-Class Problem 17.2.3: Iterative version of the `insert` function

Recall the accumulator-based, tail-recursive `insert-acc` function from In-Class Problem 16.5.3. It began by recursively accumulating all of the numbers from the sorted list that were smaller than `item`, at which point it had effectively located the appropriate insertion point. Define an iterative function, called `insert-iter`, that uses `let` to create a local variable called `acc` that starts off empty. Next, it should use a `while` loop to iteratively accumulate all of the numbers from the sorted list that are smaller than `item`, at which point it will have located the appropriate insertion point for `item`. After the `while` loop, it can then use `transfer-all` (cf. Example 16.4.3) or `transfer-all-iter` (cf. In-Class Problem 17.2.2) to transfer all of the accumulated numbers onto the remains of the sorted list. Note that your `insert-iter` function should satisfy the same contract as the `insert-wr` function, not the `insert-acc` function. Instead of taking an extra `acc` input, it creates a local variable called `acc`.

In-Class Problem 17.2.4: Iterative version of `insertion-sort`

Using the same approach as in In-Class Problem 17.2.3, define an iterative version of the insertion-sort algorithm. Call your function `isort-iter`. You may wish to review the `isort-acc` and `isort-wr` functions from In-Class Problem 16.5.4.

Example 17.2.4: Using `random` within a `while` loop

This example illustrates that the value of a variable can be set to a random value on each iteration, leading to a `while` loop having an unpredictable number of iterations.

```scheme
> (let ((val (random 4)))
  (while (< val 3)
    (printf "val: \(\%\)
    (set! val (random 4)))
  ;; after the WHILE:
  val)
val: 2
val: 0
val: 2
val: 1
3
> (let ((val (random 4)))
  (while (< val 3)
    (printf "val: \(\%\)
    (set! val (random 4)))
  ;; after the WHILE:
  val)
val: 1
val: 0
val: 1
val: 2
val: 1
val: 0
3
```
Example 17.2.5: (Optional) Implementing our own version of `while`

The following my-while function provides essentially the same behavior as the while special form. However, it is a little clunkier to use because, unlike special forms, function-call expressions are evaluated by the Default Rule. Therefore, to ensure proper behavior, the condition and the body must be encapsulated within lambda functions, called cond-func and body-func, each of which takes zero inputs. The my-while function causes the desired condition to be evaluated by applying cond-func to zero inputs; and it causes the desired body expressions to be evaluated by applying body-func to zero inputs. Notice that, unlike almost all of the recursive functions seen in Part I of this book, the recursive call to my-while is applied to the same inputs! In so doing, the my-while function is implicitly relying on cond-func or body-func to be destructive, to avoid going into an endless loop.

```
;; MY-WHILE
;; -----------------------------------------------
;; INPUTS: COND-FUNC, a function that takes zero inputs
;; BODY-FUNC, a function that takes zero inputs
;; OUTPUT: VOID
;; SIDE EFFECT: As long as (COND-FUNC) evaluates to
;; (something that counts as) true, MY-WHILE evaluates
;; (BODY-FUNC).

(define my-while
  (lambda (cond-func body-func)
    (when (cond-func) ← Apply cond-func to zero inputs
      (body-func) ← Apply body-func to zero inputs
    ;; Recursively call MY-WHILE with the same inputs!
      (my-while cond-func body-func)))))
```

The following interaction demonstrates the use of the my-while function.

```
> (let ((ctr 3))
  (printf "MY-WHILE example:\n")
  (my-while (lambda () ← cond-func
    (> ctr 0))
    (lambda () ← body-func
      (printf " ctr: \"A\"\n" ctr)
      (set! ctr (1- ctr)))))
MY-WHILE example:
  ctr: 3
  ctr: 2
  ctr: 1
```

Note that because my-while is a function, the expression, (my-while...), is evaluated by the Default Rule. As a result, both lambda expressions are evaluated before calling the my-while function. Therefore, the corresponding lambda functions are created in the context of the local environment that includes an entry for the symbol ctr. Thus, whenever these lambda functions are eventually called, their bodies are evaluated in an environment that is nested within the environment that has an entry for ctr. Thus, any occurrences of the symbol ctr in the bodies of those functions will refer to the local variable ctr, as desired.

Here is the equivalent example done using the while special form.

```
> (let ((ctr 3))
  (printf "WHILE example:\n")
```

Example 17.3.1: Implementing print-n-dashes iteratively

Here is the print-n-dashes function. Note that it is tail recursive.

```scheme
;; PRINT-N-DASHES
;; ---------------------------------------------------------------
;; INPUT: N, a non-negative integer
;; OUTPUT: None
;; SIDE EFFECT: Prints N dashes in the Interactions Window
(define print-n-dashes
  (lambda (n)
    (cond
      ;; Base Case: n <= 0
      ((<= n 0) (newline))
      ;; Recursive Case: n > 0
      (else
       ;; Print one dash
       (printf "-
")
       ;; Let the recursive func call print the rest of the dashes
       (print-n-dashes (- n 1))))))
```

Here is an equivalent function, called print-n-dashes-iter, that is implemented using iteration.

```scheme
(define print-n-dashes-iter
  (lambda (n)
    ;; Iterative Case: N > 0
    (while (> n 0)
      (printf "-
")
      (set! n (- n 1)))
    ;; Base Case: N <= 0
    (newline)))
```

17.3 Converting Tail Recursion to Iteration

Recall from Section 14.2 that for any tail-recursive function, DrScheme can employ a memory-saving trick whereby a single function-call box is repeatedly recycled, instead of creating a new function-call box for each recursive function call. In effect, what DrScheme does is to convert a tail-recursive function call into iteration. This section describes the process.

We begin by recalling the tail-recursive `print-n-dashes` function, seen previously in Example 14.2.1, and then showing how it can be implemented iteratively using `while` and `set!`.

```
(while (> ctr 0)
  (printf " ctr: ~a\n" ctr)
  (set! ctr (1- ctr)))
WHILE example:
  ctr: 3
  ctr: 2
  ctr: 1
```
The following interactions demonstrate that the two functions provide the same functionality.

```
> (print-n-dashes 5)
-----
> (print-n-dashes 8)
--------
> (print-n-dashes-iter 5)
-----
> (print-n-dashes-iter 8)
--------
```

For the recursive function, the recursive case involves the printing of a single dash followed by a tail-recursive function call with the input \((- n 1)\). For the iterative function, each iteration involves the printing of a single dash followed by destructively decrementing the value of \(n\) by one. For both functions, the base case is reached when the value of \(n\) is zero, resulting in a newline being generated. For the recursive function, the base case is one of the cases that is explicitly handled by the \texttt{cond} expression; for the iterative function, the base case is what happens after the \texttt{while} loop is completed.

We can make the comparison between the recursive and iterative versions even clearer if we implement the recursive version as follows:

```scheme
(define print-n-dashes-alt
  (lambda (n)
    ;; Recursive Case: N > 0
    (when (> n 0)
      (printf "-")
      (print-n-dashes (- n 1)))
    ;; Base Case: N <= 0
    (newline)))
```

When DrScheme evaluates the expression \((\text{print-n-dashes-alt } 5)\), it uses the trick of recycling a single function-call box for all of the tail-recursive function calls. In that single function-call box, there is a local environment in which the value of the local variable \(n\) starts out at 5, but then decrements by one for each recursive function call. Similarly, when DrScheme evaluates the expression \((\text{print-n-dashes-iter } 5)\), there is a single function-call box in which the value of the local variable \(n\) starts out at 5, but then decrements by one on each iteration.

Unlike in the above example, most of the times we want to create a tail-recursive function, we start by defining a tail-recursive helper function that takes extra inputs (e.g., accumulators). Afterward, we define a wrapper function that calls the tail-recursive helper function with suitable inputs. These more typical cases of tail-recursion can also be easily converted into iteration, as demonstrated by the following example.

Example 17.3.2

Recall the \texttt{sum-to-n-acc} function, seen previously in Example 14.3.2.

```scheme
;; SUM-TO-N-ACC
;; -------------------------------
;; INPUTS: N, a non-negative integer
;; ACC, a number (an accumulator)
;; OUTPUT: When called with ACC=0, the output is the value
;; 0 + 1 + 2 + \ldots + N.
```
;; More generally, the output is the value of
;; ACC + 0 + 1 + 2 + ... + N.

(define sum-to-n-acc
 (lambda (n acc)
 (cond
 ;; Base Case: n = 0
 (= n 0)
 (printf "Base Case (n=0, acc=\"A\")\" acc)
 ;; Return the accumulator!
 acc)
 ;; Recursive Case: n > 0
 (#t
 (printf "Recursive Case (n=\"A\", acc=\"A\")\" n acc)
 ;; Make recursive function call with updated inputs
 (sum-to-n-acc (- n 1) (+ acc n))))))

Here is the corresponding wrapper function:

;; SUM-TO-N-WR
;; --
;; INPUT: N, a non-negative integer
;; OUTPUT: The sum, 0 + 1 + 2 + ... + N

(define sum-to-n-wr
 (lambda (n)
 ;; Call the accumulator-based helper with ACC=0:
 (sum-to-n-acc n 0)))

And here is an iterative function, sum-to-n-iter, that performs the same computation:

;; SUM-TO-N-ITER
;; --
;; INPUT: N, a non-negative integer
;; OUTPUT: The sum, 0 + 1 + 2 + ... + N

(define sum-to-n-iter
 (lambda (n)
 ;; Create local variable ACC whose initial value is 0
 (let ((acc 0))
 ;; Iterative Case: N > 0
 (while (> n 0)
 ;; Accumulate the current value of N
 (set! acc (+ acc n))
 ;; Decrement N by one
 (set! n (- n 1))
 ;; After the WHILE, ACC has the answer
 acc))))

When there are multiple base cases and multiple recursive cases, the conversion from recursion to iteration can still be done quite easily.
Example 17.3.3

The following tail-recursive function walks through a list of numbers, searching for an occurrence of num. Along the way, it prints out information about the numbers it passes by: + for numbers bigger than num, – for numbers smaller than num. As its output, it returns #f if num wasn’t found in the list; otherwise, it returns the index of the position where num was found. Although this function can easily be implemented without multiple base cases or multiple recursive cases, implementing it in this way enables us to demonstrate the general process of converting a tail-recursive function to an iterative function.

;; INDEX-OF-NUM-IN-LIST-ACC
;; ---
;; INPUTS: NUM, a number
;; LISTY, a list of numbers
;; INDY, current index
;; OUTPUT: When called with INDY = 0, the output is
;; the index of the first occurrence of NUM in LISTY;
;; or #f if NUM does not occur in LISTY.
(define index-of-num-in-list-acc
 (lambda (num listy indy)
 (cond
 ;; Base Case 1: LISTY empty
 ((null? listy)
 ;; NUM not found
 #f)
 ;; Base Case 2: NUM found!
 ((= num (first listy))
 ;; return the current index
 indy)
 ;; Recursive Case 1: (FIRST LISTY) > NUM
 (> (first listy) num)
 (printf "+")
 (index-of-num-in-list-acc num (rest listy) (+ indy 1))
 ;; Recursive Case 2: (FIRST LISTY) < NUM
 (else
 (printf "-"
 (index-of-num-in-list-acc num (rest listy) (+ indy 1)))))
 ;; INDEX-OF-NUM-IN-LIST -- wrapper function
 ;; ---
 ;; INPUTS: NUM, a number
 ;; LISTY, a list of numbers
 ;; INDY, current index
 ;; OUTPUT: The index of the first occurrence of NUM
 ;; in LISTY; or #f if NUM does not occur in LISTY.
(define index-of-num-in-list
 (lambda (num listy)
 ;; Call tail-recursive helper with INDY = 0:
 (index-of-num-in-list-acc num listy 0)))

Below, the index-of-num-in-list-iter function is an iterative implementation that exhibits the same behavior. Notice the use of two extra variables, continue? and answer. The while loop keeps
going as long as the value of continue? is #t. When the base case is reached, continue? is set to #f to stop the while loop; and, because the while expression evaluates to void, the answer variable is used to store the desired answer so that it can be recalled after the while loop is finished.

```scheme
(define index-of-num-in-list-iter
  (lambda (num listy)
    (let ((indy 0)
           (answer #f)
           (continue? #t))
      (while continue?
        (cond
          ;; Base Case 1: LISTY empty
          ((null? listy)
           ;; Stop the WHILE loop
           (set! continue? #f)
           ;; Num not found
           (set! answer #f))
          ;; Base Case 2: NUM found!
          ((= num (first listy))
           ;; Stop the WHILE loop
           (set! continue? #f)
           ;; INDY is where we found NUM
           (set! answer indy))
          ;; Recursive Case 1: (FIRST LISTY) > NUM
          ((> (first listy) num)
           ;; Set vars for next iteration
           (set! listy (rest listy))
           (set! indy (+ indy 1)))
          ;; Recursive Case 2: (FIRST LISTY) < NUM
          (else
           ;; Set vars for next iteration
           (set! listy (rest listy))
           (set! indy (+ indy 1))))
      ;; After the WHILE loop:
      answer)))
```

The following interactions demonstrate that the recursive and iterative functions have the same behavior.

```plaintext
> (index-of-num-in-list 3 '(5 4 9 0 0 2 3 8 7 6 9))
+++---6
> (index-of-num-in-list-iter 3 '(5 4 9 0 0 2 3 8 7 6 9))
+++---6
> (index-of-num-in-list 3 '(2 5 1 6 3 8 8))
--+-+4
> (index-of-num-in-list-iter 3 '(2 5 1 6 3 8 8))
--+-+4
```
17.4 The \texttt{dotimes} Special Form

As its name suggests, the \texttt{dotimes} special form enables something to be done a certain number of times. In particular, for a given value \(n \), the \texttt{dotimes} special form will evaluate the expressions in its body \(n \) times, once for each value in the set \{0, 1, 2, \ldots, n-1\}. The \texttt{dotimes} special form will be particularly useful for iteratively walking through \textit{vectors}, to be discussed in the next chapter.

\textbf{The syntax of the \texttt{dotimes} special form.} The \texttt{dotimes} special form has the following syntax:

\[
\text{(dotimes (var numExpr)} \\
\text{expr}_1 \\
\text{expr}_2 \\
\text{...} \\
\text{expr}_k
\text{)}
\]

where:

\begin{itemize}
\item \texttt{var} is a symbol that will be the name of a counter variable in a local environment created by the \texttt{dotimes};
\item \texttt{numExpr} is any expression that evaluates to a non-negative integer, say, \(n \), that will specify the number of \textit{iterations} to be performed by the \texttt{dotimes}; and
\item The expressions, \(\texttt{expr}_1, \texttt{expr}_2, \ldots, \texttt{expr}_k \), are any \(k \) expressions that together constitute the \textit{body} of the \texttt{dotimes}.
\end{itemize}

\textbf{The semantics of the \texttt{dotimes} special form.} A \texttt{dotimes} special form is evaluated as follows. First, the expression \texttt{numExpr} is evaluated, resulting in a non-negative integer \(n \). Second, a local environment \(\mathcal{E} \) is created containing a variable \texttt{var} whose value is initially set to zero. Next, the following steps are performed \(n \) times:

\begin{itemize}
\item The expressions, \(\texttt{expr}_1, \texttt{expr}_2, \ldots, \texttt{expr}_k \), are evaluated with respect to that new local environment.
\item The value of \texttt{var} in the local environment is incremented by one.
\end{itemize}

Thus, the expressions in the body of the \texttt{dotimes} are evaluated \(n \) times, once for each value of \texttt{var} in the range, \{0, 1, 2, \ldots, n - 1\}. Note that the expressions in the body may refer to the variable \texttt{var}. When they are evaluated, the current value of \texttt{var} will be taken from the local environment.

Finally, the \texttt{dotimes} special form evaluates to \texttt{void}. Therefore, the usefulness of \texttt{dotimes} comes not from any output value, but from the side effects that occur by evaluating the expressions in its body with respect to the new local environment.

\begin{center}
\textbf{Example 17.4.1: Illustrating the \texttt{dotimes} special form}
\end{center}

\begin{tiny}
\begin{verbatim}
> (dotimes (i 5) ;; The body:
 (printf "i: ~A\%% i))
 i: 0
 i: 1
 i: 2
 i: 3
 i: 4
> (dotimes (i (+ 1 2)) ;; The body:
 (printf "~A + ~A = ~A\%% i i (+ i i)))
 0 + 0 = 0
\end{verbatim}
\end{tiny}
In these examples, the body consists of a single expression; however, that need not be the case in general. Notice that in the first example, the numerical expression 5 ensures that the expression in the body will be evaluated five times, once for each value of \(i \) in the range \(\{0, 1, 2, 3, 4\} \). In the second example, the body of the \texttt{dotimes} is evaluated three times, since \((+ 1 2) \) evaluates to 3.

Example 17.4.2: (Optional) Implementing our own version of \texttt{dotimes}

The \texttt{my-dotimes} function, defined below, implements essentially the same behavior as the \texttt{dotimes} special form. However, like \texttt{my-while}, defined earlier, it uses a lambda function, called \texttt{body-func}, to encapsulate the expressions in the body of the \texttt{dotimes}.

```scheme
;; MY-DOTIMES
;; --------------------------------------------------------------
;; INPUTS: N, a non-negative integer
;; BODY-FUNC, a function that takes zero inputs
;; OUTPUT: void
;; SIDE EFFECT: Evaluates the expression (BODY-FUNC I) N times, once for each value of I in \( \{0, 1, 2, \ldots, N-1\} \)
(define my-dotimes
  (lambda (n body-func)
    (let ((i 0))
      (while (< i n)
        (body-func i)
        (set! i (1+ i))))))
```

Here is a simple demonstration of its behavior:

```scheme
> (my-dotimes 4 (lambda (i)
      (printf "--- i = \"A\"%i\")
    ))
--- i = 0
--- i = 1
--- i = 2
--- i = 3
```

17.5 The \texttt{dolist} Special Form

The \texttt{dolist} special form automates a kind of iteration that involves walking through a list. If you want to do something in response to each element of a list, then \texttt{dolist} may come in handy.

The syntax of the \texttt{dolist} special form. The syntax of the \texttt{dolist} special form is as follows:

```scheme
(dolist (elt listExpr)
  expr_1
  expr_2)
```
The semantics of the `dolist` special form. A `dolist` special form is evaluated as follows. First, `listExpr` is evaluated. It must evaluate to some list \(L \); otherwise, there will be an error. Next, a local environment \(E' \) is created that contains a variable called `elt`. Then, for each element \(e \) of the list \(L \), the following steps are taken: (1) the value of `elt` is set to \(e \); and (2) the expressions, \(\text{expr}_1, \ldots, \text{expr}_k \), are evaluated—in order—with respect to the local environment \(E' \). (Typically, the expressions in the body contain references to the symbol `elt`, which allows them to do computations involving the current element \(e \).) Thus, if there are \(n \) elements in the list \(L \), then the expressions in the body of the `dolist` will be evaluated \(n \) times, once for each element of \(L \).

Example 17.5.1

The following interactions demonstrate the semantics of the `dolist` special form.

```scheme
> (dolist (elt '(a b c))
  (printf "elt: \"A-%\" elt))
elt: a
elt: b
elt: c
> (dolist (elt (cons 1 (cons 2 (cons 3 ()))))
  (printf "elt: \"A\" elt)
  (printf " <----")
elt: 1 <----
elt: 2 <----
elt: 3 <----
```

Note that unlike many recursive functions on lists, there is no way to break out of a `dolist` before processing all of the elements in the given list.

Example 17.5.2: (Optional) Implementing our own version of `dolist`

The following function provides the same functionality as the `dolist` special form, except that the expressions in the body are encapsulated within a lambda function that expects a single input, `elt`.

```scheme
;; MY-DOLIST
;; ---------------------------------------------------------------
;; INPUTS: LISTY, a list
;; BODY-FUNC, a function that takes a single input,
;; for example, any element of LISTY
;; OUTPUT: void
;; SIDE EFFECT: For each element ELT of LISTY, MY-DOLIST
;; applies BODY-FUNC to ELT.

(define my-dolist
  (lambda (listy body-func)
    ;; As long as LISTY is non-empty...
    (while (not (null? listy))
      ;; Evaluate the "body" with ELT = (FIRST LISTY)
      ...)```
Here are some examples of its use.

```scheme
> (my-dolist '(a b c)
 (lambda (elt)
 (printf "elt: \"A\"%c elt)))
elt: a
elt: b
elt: c
> (my-dolist (cons 1 (cons 2 (cons 3 ())))
 (lambda (elt)
 (printf "elt: \"A\"%c elt)
 (printf \" <---\"%c)))
elt: 1 <---
elt: 2 <---
elt: 3 <---
```

17.6 Summary

This chapter introduced a kind of repetitive processing called iteration, that is an alternative to recursion. Iterative programming typically requires destructive programming. In particular, it frequently requires the programmer to create and modify various variables to control the iterative process. This can make tracking down errors in iterative programming more difficult. However, for many tasks, iterative solutions can be elegant and efficient.

The `set!` special form allows a programmer to change the value of an existing variable to any desired value. Frequently, `set!` is used to increment or decrement the value of a counter variable in looping constructs.

The `while` special form provides a basic form of iteration where the programmer must explicitly specify the condition that determines how many iterations are performed, and explicitly modify the values of variables upon which the condition typically depends. The `let`, `while` and `set!` special forms are frequently used together. For example, a `let` special form can be used to create some local variables (e.g., a counter variable and one or more accumulators), a `while` special form can then be placed within the body of the `let` to provide the desired repetitive behavior, and the `set!` special form can be used within the body of that `while` to control its iterative behavior. With such low-level control, the programmer can specify a wide variety of iterative computational behaviors that can be extremely useful; however, care must be taken to ensure that, for example, counter variables are correctly updated to avoid entering into an infinite loop.

Next, this chapter demonstrated how tail-recursive functions can be transformed into equivalent iterative functions. The equivalence of tail-recursion and iteration is what DrScheme relies on when it recycles a single function call box for all of the recursive function calls of a tail-recursive function.

Because certain iterative computations are so frequently needed, the `dotimes` and `dolist` special forms are provided. They shield the programmer from the low-level details of, for example, setting up a local environment for a counter variable, and managing the changing of its value throughout the iterative process. The `dotimes` special form enables a programmer to make some set of computations happen a specified number of times, once for each value of a counter variable, for example, \( i \in \{0, 1, 2, \ldots, n - 1\} \). In each iteration, the expressions in the body of the `dotimes` may refer to the current value of \( i \). Similarly, the `dolist` special form enables a programmer to make some set of computations happen, once for each element of a given list.
Special Forms Introduced in this Chapter

set!  Destructively modify the value of a variable
while  As long as some condition holds, evaluate expressions in body
dotimes  Evaluate expressions in the body \( n \) times, once for each value in \( \{0, 1, \ldots, n - 1\} \)
dolist  Evaluate expressions in the body, once for each element of a given list
Chapter 18

Vectors

A vector is a data structure that, like a list, contains an ordered sequence of data. However, there are many significant differences between vectors and lists.

Recall that lists can be incrementally extended, one element at a time, using the cons function. As a result, as illustrated in Fig. 18.1, the individual cons cells in which the various elements of a list are stored frequently end up being scattered haphazardly about the computer’s memory. For this reason, accessing elements of a list can be relatively slow. For example, to access the one-thousandth element of a list typically requires recursively walking through the first thousand cons cells in the chain. However, as has been demonstrated repeatedly in previous chapters, much recursive processing of lists can be done while only accessing the first and rest of a list. For these sorts of applications, lists are quite handy. Furthermore, many list-based functions can be written non-destructively, which facilitates testing and debugging, since the performance of a non-destructive function depends only on the code within its body.

In sharp contrast to lists, vectors are stored within a single, contiguous block of memory—which has both advantages and disadvantages. The principal advantage is that every item of a vector can be accessed very quickly, whether the first element or the thousandth. To demonstrate why, Fig. 18.2 illustrates the layout of the elements in a typical vector. Notice that each slot has a numerical index, starting at zero. A crucial feature of the layout is that each slot takes up the same amount of space (e.g., four bytes per slot in the figure). Since each slot has the same size, the memory address of any given slot is very easy to compute. For example, if the start of the vector is located at memory address 1000, and each slot is four bytes wide, then the address of the $i$th slot is $1000 + 4 \times i$. (Thankfully, DrScheme takes care of such low-level details. A Scheme programmer need never deal directly with memory addresses.) An important feature of the “Random Access Memory” (RAM) found in modern computers is that the contents of any memory address can be fetched in the same (very small) amount of time. (The term “random” here is used to indicate that the contents of any randomly selected memory address can be fetched in the same, very small amount of time.) Thus, the time required to fetch the first element of a vector (i.e., the element with index 0) is the same as the time required to fetch the thousandth element.

One disadvantage of vectors is that the block of memory that will hold the vector’s elements must be allocated in one chunk. As a result, vectors cannot be easily extended to accommodate new elements. In particular, if a vector is created to hold up to $N$ elements, then it will never be able to hold more than $N$ elements. There is no analog to the cons function for vectors. Each vector has a fixed length.

Since not all of a vector’s elements may be known at the time the block of memory is allocated, destructive programming is typically used with vectors. For example, a Scheme function might decide to set the 24th element of a vector to be #t, then later set the 36th element to be 34.2, and still later set the 24th element to be #f (erasing the prior contents of the 24th slot). Just as accessing any desired slot of a vector is very efficient, so too is the operation of destructively modifying the contents of any desired slot. (Again, this is a feature of Random Access Memory.) Thus, the speed of accessing and modifying the contents of a vector is balanced by the challenge of using destructive programming, which can make testing and debugging your functions a little more difficult. Nonetheless, the tradeoff can be quite worthwhile; and if care is taken, the risks associated with using destructive programming can be mitigated.
18.1 Vector Expressions

Chapter 2 introduced several types of primitive data expressions, including numbers, booleans, the empty list, and symbols. For each type of expression, the syntactic rules for character sequences denoting that type of data were described. Then, Chapter 3 described how instances of those data types are evaluated. Similarly, Chapter 6 presented the syntactic rules for character sequences that denote non-empty lists, and described how the Default Rule evaluates non-empty lists. Following this trend, this section presents the #(...), called the pound syntax—for character sequences that denote vectors, as well as the semantics of evaluation for vectors. (Vectors evaluate to themselves.) It should be noted, however, that the pound syntax has limited use because the vectors it denotes are immutable (i.e., their contents cannot be changed). The pound syntax is typically only useful for testing functions that look at the contents of vectors, and perhaps do some computations based on those contents, but do not try to change the contents in any way. After presenting the pound syntax, the next section presents built-in functions for creating mutable vectors (i.e., vectors whose contents can be changed), which turn out to be more useful in practice.

A vector is a datum. Scheme provides a special syntax, the pound syntax, for denoting vectors. Just as the expression (a b c) can be used to represent (or denote) a list containing the three elements a, b and c, the expression #(a b c) can be used to represent (or denote) a vector containing the three elements a, b and c. In general, any expression of the form #(e₁ e₂ ... eₙ) can be used to represent a vector containing the n elements denoted by the expressions e₁, e₂, ..., eₙ. Thus, for example, the expression #(x #t () 32) denotes a vector containing four elements: a symbol, a boolean, the empty list, and a number.

One important fact about the #(...) syntax is that the vectors it represents are immutable (i.e., their contents cannot be changed). This limits the usefulness of the #(...) syntax. However, it can be useful when testing functions that don’t need to modify their vector inputs (e.g., functions that print out the contents of a vector). Immutable vectors can also be useful as the values of global constants. For example, the vector #(clubs hearts diamonds spades) could be used to denote the suits in a deck of cards, and the vector
#(sun mon tue wed thu fri sat) could be used to denote the days of the week.

* Unlike lists, vectors evaluate to themselves!

**Example 18.1.1: Demonstrating that vectors evaluate to themselves**

The following interactions use the #(...) syntax to demonstrate that vectors evaluate to themselves.

```scheme
group
 > #(1 2 a b #t (+ 2 3)) ← The pound syntax denotes a vector
 > #(1 2 a b #t (+ 2 3)) ← That vector evaluates to itself!
 > #(a b #(c d e) (x y z))
 > #(a b #(c d e) (x y z))
```

With the #(...) syntax, there is no need to quote the subsidiary expressions. For example, #((a b c) simply denotes the vector containing the three symbols a, b and c. When the vector gets evaluated, its elements are not evaluated! The vector simply evaluates to itself—without evaluating any of its elements. The Default Rule for evaluating non-empty lists does not apply to vectors!

Incidentally, DrScheme uses the #(...) syntax to report results that are vectors, whether they are immutable or mutable.

* Remember: Vectors denoted by the # syntax are immutable! Once created, their contents can’t be changed.

## 18.2 Constructing Vectors

Scheme provides two built-in functions, called vector and make-vector, that can be used to create new vectors. The vector function is similar to the built-in list function, mentioned briefly in Section 16.1. The make-vector function is typically the most practical. It enables the programmer to create a vector of any specified length.

### 18.2.1 The Built-in vector Function

The vector function is a built-in function that works very much like the built-in list function, mentioned briefly in Section 16.1. Whereas list constructs a list containing the specified elements, vector constructs a vector containing the specified elements. Unlike the vectors denoted by the #(...) syntax, vectors created by the vector function are mutable (i.e., their contents can be changed—we’ll see how momentarily).

**Example 18.2.1: Using the vector function**

Here’s the contract for the vector function, followed by some examples of its use.

```scheme
;; VECTOR -- built-in function
;; --
;; INPUTS: ELT1, ELT2, ELT3, ... : any number of inputs
;; OUTPUT: A mutable vector containing the specified elements

> (vector 1 (+ 2 3) ’a)
 #(1 5 a)
> (define vecky (vector 1 (+ 2 3) ’a))
> vecky
```
Note that since `vector` is a built-in function, expressions such as `(vector 1 (+ 2 3) ’a)` are evaluated by the Default Rule. Thus, all input expressions are evaluated before being passed as input to the `vector` function—which is why the `a` in the first two examples had to be quoted.

### 18.2.2 The `make-vector` Function

The `make-vector` function is a built-in function that can be used to create a vector of any specified length. It is the most common way of creating a vector because it can be used, for example, to easily create a vector with, say, 1000 slots. Like with the `vector` function, vectors created by `make-vector` are mutable (i.e., their contents can be changed). The `make-vector` function can be called with either one or two inputs (i.e., the second input is optional). The first input specifies how many slots the new vector should contain. The second input, if provided, specifies the initial value for all of the slots. If the second input is not provided, `make-vector` fills each slot with a default value of 0.

**Example 18.2.2: Using the `make-vector` function**

Here’s the contract for the `make-vector` function, followed by some examples of its use.

```scheme
;; MAKE-VECTOR -- built-in function
;; ---
;; INPUTS: NUM-SLOTS, a non-negative integer
;; INIT-VALUE, an *optional* input, can be anything
;; OUTPUT: A vector with NUM-SLOTS slots, each initially
;; filled with INIT-VALUE (or 0 if INIT-VALUE
;; not provided)

> (make-vector 5) ← called with one input
#(0 0 0 0 0)
> (make-vector 15)
#(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
> (make-vector 5 ’a)
#(a a a a a)
> (make-vector 15 ’_)
#(_ _ _ _ _ _ _ _ _ _ _ _ _ _ _)
```

### 18.3 Accessing Information Stored in a Vector

To be of any use, the information stored in a vector must be accessible to the programmer. Scheme provides the `vector-ref` function to access the contents of any specified slot in a vector, and the `vector-length` function to access the (fixed) number of elements in a vector.

---

1. It is not hard to define Scheme functions that take optional inputs, as a quick internet search will reveal; however, doing so is beyond the scope of this textbook.
18.3.1 The `vector-ref` Function

Each element of a vector is identified by its numerical index. The built-in `vector-ref` function provides an easy way to access any element of a vector by its index.

**Example 18.3.1: Using `vector-ref`**

Here is the contract for the `vector-ref` function, followed by some examples of its use.

```scheme
;; VECTOR-REF -- built-in function
;; -------------------------------
;; INPUTS: VECKY, a vector
;; INDY, an index
;; OUTPUT: The item of VECKY stored at slot INDY

> (define vecky #(a b c d e))
> (vector-ref vecky 0)
a
> (vector-ref vecky 2)
c
```

Although the `vector-ref` and `list-ref` functions may appear similar syntactically, they operate quite differently. The `vector-ref` function accesses the specified element of a vector nearly instantaneously, while the `list-ref` function walks through each element of the specified list until it finds the one with the desired index. Thus, `vector-ref` is much more efficient than `list-ref`.

18.3.2 The `vector-length` Function

As already mentioned, each vector has a fixed length. For this reason, the length of the vector can be stored with the vector itself, when it is created. Thus, the built-in `vector-length` function does not need to walk through the entire vector to figure out how long it is; instead it can simply look up the length information that is stored with the vector. (The length of a vector is an example of a field in a data structure, which will be discussed in the next chapter.) Thus, using `vector-length` is very fast with any vector, no matter how long. This is quite different from the built-in `length` function for lists which must walk all the way through a list in order to figure out how many elements it has.

**Example 18.3.2: Using `vector-length`**

Here is the contract for `vector-length`, followed by some examples of its use.

```scheme
;; VECTOR-LENGTH -- built-in function
;; --------------------------------------
;; INPUT: VECKY, a vector
;; OUTPUT: The number of elements/slots in that vector

> (define vecky #(a b c d e))
> (vector-length vecky)
5
> (vector-length (make-vector 25))
25
```
In-Class Problem 18.3.1: Fetching a random element from a vector

Define a function, called fetch-random-element, that satisfies the following contract:

;; FETCH-RANDOM-ELEMENT
;; -----------------------------------------------
;; INPUT: VECKY, a vector
;; OUTPUT: One of the elements of VECKY, chosen at random

Here are some examples of the desired behavior:

> (fetch-random-element #(a b c d e f))
c
> (fetch-random-element #(a b c d e f))
a
> (fetch-random-element #(a b c d e f))
d

Hint: Use the built-in vector-length, random and vector-ref functions.

18.4 Recursively or Iteratively Processing Vectors

Since a vector is an ordered sequence of elements, we can define recursive functions to walk through vectors in much the same way that we defined recursive functions to walk through lists. One example of this will be given below. However, writing recursive functions to walk through vectors would quickly grow tiresome because it would involve repeating the same kind of pattern over and over again. To avoid this kind of repetition, we will instead use the dotimes special form to enable us to iteratively walk through any vector. However, before introducing this use of dotimes, we first demonstrate how to manually write a recursive function to walk through some or all of a vector.

Example 18.4.1: (Optional) Manually walking through a vector

The following function prints out the contents of a vector from a given starting index. On each recursive function call, the value of the index is incremented, until it goes past the end of the vector. Recall that if a vector has length n, then the legal indices range from 0 to n – 1.

;; PRINT-VECTOR-FROM
;; -----------------------------------------------
;; INPUTS: VECKY, a vector
;; I, a non-negative integer, no greater than the length of VECKY
;; OUTPUT: None
;; SIDE EFFECT: Prints out the elements of VECKY from index I onward.

(define print-vector-from
 (lambda (vecky i)
  (cond
   ;; Base Case: I is too big
   ;; Note: The last legal index of VECKY is LENGTH-1
   ((>= i (vector-length vecky))
    (void))
   ;; Inductive Case: I is valid
   (void)
  )))
;; Recursive Case: I is a legal index
(else
;; Print one element
(printf "Element ~a of VECKY is: " i (vector-ref vecky i))
;; Let recursion print the rest of the elements
(print-vector-from vecky (+ i 1)))))))

> (print-vector-from #(a b c d) 0)
Element 0 of VECKY is: a
Element 1 of VECKY is: b
Element 2 of VECKY is: c
Element 3 of VECKY is: d
> (print-vector-from #(a b c d) 2)
Element 2 of VECKY is: c
Element 3 of VECKY is: d

The wrapper function, print-vector-wr, can then be defined as follows:

;; PRINT-VECTOR-WR
;; -------------------------------------------------
;; INPUT: VECKY, a vector
;; OUTPUT: None
;; SIDE EFFECT: Prints out the elements of VECKY

(define print-vector-wr
  (lambda (vecky)
    (print-vector-from vecky 0)))

> (print-vector-wr #(a b c))
a
b
c

* In general, any function that needs to recursively process the elements of a vector can do so by defining a helper function that includes an extra input i whose value is initially zero and increments by one on each recursive function call until it exceeds the last legal index for the given vector.

However, the dotimes special form simplifies the task of walking through a vector.

Example 18.4.2: Printing the contents of a vector using dotimes

The print-vector function, below, illustrates the use of the dotimes special form to walk through a vector, printing out its contents. Note the use of the vector-length function to specify the number of iterations to perform.

;; PRINT-VECTOR
;; -------------------------------------------------
;; INPUT: VECKY, a vector
;; OUTPUT: None
;; SIDE EFFECT: Displays the contents of VECKY in the
;; Interactions Window, one element per row

(define print-vector
  (lambda (vecky)
    ;; I takes on the values: 0, 1, 2, ..., LENGTH-1
    (dotimes (i (vector-length vecky))
      ;; Print out the Ith element of VECKY
      (printf "A: A\n" i (vector-ref vecky i))))

> (define vecky #(a b c d e))
> (print-vector vecky)
a
b
c
d
e

---

Example 18.4.3: Printing the contents of a vector in reverse order

The following function prints out the contents of a given vector in reverse order. Notice the use of the local variable rev-indy, whose value is the index of the next element to be printed. For example, you should convince yourself that for a vector of length four, the counter variable indy will range from 0 to 3, while the local variable rev-indy will range from 3 to 0.

;; PRINT-IN-REVERSE
;; --------------------------------------------------------------
;; INPUT: VECKY, a vector
;; OUTPUT: None
;; SIDE EFFECT: Prints out the contents of VECKY
;; in reverse order

(define print-in-reverse
  (lambda (vecky)
    ;; LEN = number of elements in VECKY
    (let ((len (vector-length vecky)))
      (dotimes (indy len)
        ;; INDY takes on values from 0 to LEN-1
        ;; REV-INDY takes on values from LEN-1 to 0
        (let ((rev-indy (- len indy 1)))
          (printf "vecky[A] = A\n" rev-indy (vector-ref vecky rev-indy))))))

> (print-in-reverse #(a b c d))
vecky[3] = d
vecky[2] = c
vecky[1] = b
vecky[0] = a
In-Class Problem 18.4.1: Using `dotimes` to print out every other element of a vector

Define a function, called `print-every-other-one-veck`, that takes a vector as its only input. It should not return any output value. Instead, it should print out every other element of the given vector. Here is the contract, followed by some examples:

```
;; PRINT-EVERY-OTHER-ONE-VECK
;; ---
;; INPUT: VECK, a vector
;; OUTPUT: None
;; SIDE EFFECT: Prints out every other element of VECK

> (print-every-other-one-veck #(a b c d e))
a
c
e
> (print-every-other-one-veck #(a a b b c c d d))
a
b
c
d
```

Hint: Use the `even?` function. If the current index is even, then print out the corresponding element.

In-Class Problem 18.4.2: Testing whether two vectors are “equal”

Define a function, called `vector-equal?`, that satisfies the following contract:

```
;; VECTOR-EQUAL?
;; ---
;; INPUTS: VECK-ONE and VECK-TWO, any vectors
;; OUTPUT: #t if VECK-ONE and VECK-TWO have the same elements, in the same order; #f otherwise.

> (vector-equal? #(a b c) #(a b c))
#t
> (vector-equal? (make-vector 3) (vector 0 0 0))
#t
> (vector-equal? #(a b c) #(a b c d))
#f
```

Notice that the two input vectors cannot be equal if they have different lengths. Therefore, `vector-equal?` can immediately return `#f` if the two vectors have different lengths. On the other hand, if they do have the same length, then it can call a helper function, `vector-equal?-helper`, to manually walk through the vectors in parallel, comparing their corresponding elements. Note that using `dotimes` is not an option for this problem because the helper function should be able to stop early if it ever discovers corresponding elements that are not the same. Here’s the contract for the helper function:

```
;; VECTOR-EQUAL?-HELPER
;; ---
```
; Inputs: VECK-ONE, VECK-TWO, two vectors of the same length
; Output: #t if the corresponding elements of VECK-ONE and
; VECK-TWO are the same from index I onward.
; #f otherwise.

Notice that the helper function is only ever called on vectors having the same length.

After you’ve implemented this function, you may wish to know that the built-in equal? function can be used to test the equality of vectors, as illustrated below.

> (equal? #(1 2 3) #(1 2 3))
#t
> (equal? #(a b c) (vector ’a ’b ’c))
#t
> (equal? #(0 0 0) (make-vector 4))
#t

18.5 Destructively Modifying a Vector

The vector-set! function is provided to enable a programmer to destructively modify the contents of a specified slot in a vector. It is frequently called a mutator function, because it enables a programmer to mutate the contents of a vector.

* The name of the function ends with an exclamation point to remind us of its destructive side effect.

**Example 18.5.1: The vector-set! function**

Here is the contract for the vector-set! function, followed by an example of its use.

;; VECTOR-SET! -- Built-in Function
;; -------------------------------
;; Inputs: VECKY, a vector
;; INDY, a numerical index
;; NEW-VAL, anything
;; Output: *void*
;; Side Effect: Destructively changes the contents of VECKY
;; at slot INDY to become NEW-VAL

> (define vecko (vector 0 10 20 30))
> vecko
#(0 10 20 30)
> (vector-set! vecko 2 ’x)
> vecko
#(0 10 x 30)
### In-Class Problem 18.5.1: Initializing a vector

Define a function, called `init-veck`, that satisfies the following contract:

```
;; INIT-VECK
;; ---
;; INPUT: VECK, a vector
;; OUTPUT: Don’t care
;; SIDE EFFECT: Sets the value of slot 0 to 0, the value
;; of slot 1 to 1, and so on.
```

Here is an example of its use:

```
> (define vecky (make-vector 5))
> vecky
#(0 0 0 0 0)
> (init-veck vecky)
> vecky
#(0 1 2 3 4)
```

Hint: Use `dotimes` and `vector-set!`.

### In-Class Problem 18.5.2: Swapping elements of a vector

Define a destructive function, called `vector-swap!`, that destructively modifies a vector by swapping two of its elements as specified by the following contract:

```
;; VECTOR-SWAP!
;; ---
;; INPUTS: VECKY, a vector
;; I, J, two numerical indices
;; OUTPUT: don’t care
;; SIDE EFFECT: Destructively swaps the contents of VECKY
;; at slots I and J.
```

Here are some examples of its use:

```
> (define vecky (vector 'a 'b 'c 'd 'e 'f))
> vecky
#(a b c d e f)
> (vector-swap! vecky 1 4)
> vecky
#(a e c d b f)
> (vector-swap! vecky 0 4)
> vecky
#(b e c d a f)
```
18.6 Summary

This chapter introduced vectors that, like lists, are ordered sequences of data. However, vectors and lists have many important differences. For example, whereas the elements of a list reside in cons cells that may be scattered haphazardly throughout a computer’s memory, the contents of a vector reside within a single, contiguous block of memory. As a result, accessing the individual elements of a vector is typically much faster than accessing the individual elements of a list. Whereas lists are especially amenable to recursive processing using non-destructive programming, vectors are especially amenable to iterative processing using destructive programming. Although care must be taken when using destructive programming with vectors, the efficiency of vectors often makes the tradeoff worthwhile.

Scheme provides a special syntax, the pound syntax, for denoting immutable vectors. For example, the expression #(1 a x) denotes a vector containing three elements. The pound syntax is of limited use, for example, when testing functions that look at vectors but do not try to change their contents, or for denoting global constants (e.g., a vector containing the names of the days of the week).

To enable programmers to do meaningful computations with vectors, Scheme provides a small handful of built-in functions. The functions, vector and make-vector, are constructor functions that can be used to create new vectors, either by explicitly specifying all of the individual elements or by specifying only the total number of slots. The functions, vector-ref and vector-length, are accessor functions that can be used to access the information contained in a vector: vector-ref fetches a specified element from a vector, while vector-length returns the number of elements contained in a vector. The function, vector-set!, is a mutator function: it can be used to destructively modify the contents of an individual slot in a vector. (There is also a type-checker predicate for vectors, called vector?, but it is rarely needed.)

Because the individual elements of a vector are accessed by their numerical indices, the dotimes special form frequently comes in handy when needing to perform computations on the contents of vectors.

Built-In Functions Introduced in this Chapter

- make-vector: Construct a vector of a specified length
- vector: Construct a vector containing the specified items
- vector-length: Fetches the length of a given vector
- vector-ref: Fetches a specified element of a given vector
- vector->list: Convert vector into a list (cf. Problem 18.10)
- list->vector: Convert list into a vector (cf. Problem 18.11)
Chapter 19

Data Structures

The early chapters of this book introduced several kinds of primitive data in Scheme, including numbers, booleans, the empty list, void, and symbols. Each instance of primitive data is indivisible in the sense that it does not have any parts that the programmer can access or modify. In contrast, a data structure is an organized collection of data whose parts the programmer can access or modify. Data structures come in many varieties. For example:

- A vector is an example of a data structure whose slots are accessed by their numerical indices. Such data structures may be called index-based data structures.

- A cons cell is an example of a data structure whose slots are accessed by name. The named slots in such a data structure are called fields; and the data structures are called field-based data structures. For example, the fields in a cons cell are called first and rest.\(^1\)

- A list is an example of a composite data structure that is recursively defined. In particular, a list is defined by the following two rules:

  (Base Case) The empty list is a list.

  (Recursive Case) A cons cell whose rest field contains a list is a list.

The recursive nature of lists is what enables us to define recursive functions that process any list, no matter how complicated.

This chapter focuses on field-based data structures.

Example 19.0.1: Motivating field-based data structures, I

Suppose you wanted to write a program that needed to represent dates, such as October 22, 1958 or December 7, 1941. Since each date includes a month, a day, and a year, you could easily store each date in a vector with three slots. However, to help distinguish your dates-as-vectors from other small vectors, you might want to include an extra slot whose value would be some easily recognizable symbol, such as i-am-a-date!. Using this approach, the above-mentioned dates might be represented by the following vectors:

<table>
<thead>
<tr>
<th>0</th>
<th>i-am-a-date!</th>
<th>0</th>
<th>i-am-a-date!</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1958</td>
<td>1</td>
<td>1941</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

The following interactions demonstrate how you might use such dates-as-vectors:

---

\(^1\)Although a vector is primarily an index-based data structure, it also contains a field, called length, whose value is accessed by the vector-length function.
> (define my-birthday (vector ’i-am-a-date! 1958 10 22))
> my-birthday
#(i-am-a-date! 1958 10 22)
> (vector-ref my-birthday 2)
10
> (vector-ref my-birthday 1)
1958

Notice that to access a particular item requires knowing which index to use (e.g., 2 for month, and 1 for year).

The following example takes a more structured approach to storing date information in vectors.

---

**Example 19.0.2: Motivating field-based data structures, II**

*First, we define some useful constants.*

;; The unique identifier for dates
(define *date-id* ’i-am-a-date!)

;; Names for the various indices
(define *date-year-index* 1)
(define *date-month-index* 2)
(define *date-day-index* 3)

;; *MONTHS* -- A vector of names for the months
;; -----------------------------------------------------
;; To enable using the standard numbers for months,
;; we use a vector of length 13, ignoring slot 0.
;; And, since the names of the months won’t change,
;; we can use an *immutable* vector.

(define *months* 
  #(0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec))

*Next, we define a constructor function (i.e., a function that creates an instance of a date-as-vector).*

;; MAKE-DATE -- a constructor function
;; -----------------------------------------------------
;; INPUTS: YEAR, an integer
;; MONTH, an integer between 1 and 12
;; DAY, a positive integer between 1 and 31
;; OUTPUT: A "date-as-vector" containing the given information

(define make-date
  (lambda (year month day) 
    (vector *date-id* year month day)))

*Although it may not be used all the much, here’s a type-checker predicate for a date-as-vector.*
;;; DATE? -- type-checker predicate for dates
;;; -----------------------------------------------
;;; INPUT: DATUM, anything
;;; OUTPUT: #t, if DATUM is a "date-as-vector"

(define date? (lambda (datum)
    ;; Output #t if DATUM is a vector with four slots,
    ;; and whose zeroeth slot contains the *DATE-ID*:
    (and (vector? datum)
         (= 4 (vector-length datum))
         (eq? *date-id* (vector-ref datum 0))))

Next, we define some accessor functions (i.e., functions that enable us to access the information stored in a date-as-vector).

;;; DATE-YEAR -- Accessor Function
;;; ----------------------------------
;;; INPUT: DATEY, a "date-as-vector"
;;; OUTPUT: The year stored in DATEY

(define date-year (lambda (datey) (vector-ref datey *date-year-index*))

;;; DATE-MONTH -- Accessor Function
;;; ----------------------------------
;;; INPUT: DATEY, a "date-as-vector"
;;; OUTPUT: The month stored in DATEY

(define date-month (lambda (datey) (vector-ref datey *date-month-index*))

;;; DATE-DAY -- Accessor Function
;;; ----------------------------------
;;; INPUT: DATEY, a "date-as-vector"
;;; OUTPUT: The day stored in DATEY

(define date-day (lambda (datey) (vector-ref datey *date-day-index*))

And, finally, some mutator functions (i.e., functions that enable us to destructively modify the contents of a date-as-vector).

;;; SET-DATE-YEAR! -- Mutator Function
;;; -------------------------------------
;;; INPUTS: DATEY, a "date-as-vector"
;;;         NEW-VAL
;;; OUTPUT: Don’t care
;;; SIDE EFFECT: Destructively modifies the contents of
;;;              the YEAR slot to be NEW-VAL.
(define set-date-year!
  (lambda (datey new-val)
    (vector-set! datey *date-year-index* new-val)))

;;; SET-DATE-MONTH! -- Mutator Function
;;; -------------------------------
;;; INPUTS: DATEY, a "date-as-vector"
;;; NEW-VAL
;;; OUTPUT: Don’t care
;;; SIDE EFFECT: Destructively modifies the contents of
;;; the MONTH slot to be NEW-VAL.

(define set-date-month!
  (lambda (datey new-val)
    (vector-set! datey *date-month-index* new-val)))

;;; SET-DATE-DAY! -- Mutator Function
;;; -------------------------------
;;; INPUTS: DATEY, a "date-as-vector"
;;; NEW-VAL
;;; OUTPUT: Don’t care
;;; SIDE EFFECT: Destructively modifies the contents of
;;; the DAY slot to be NEW-VAL.

(define set-date-day!
  (lambda (datey new-val)
    (vector-set! datey *date-day-index* new-val)))

The following interactions demonstrate the use of dates-as-vectors to store date information:

> (define my-birthday
   (make-date 1958 10 22)) ← Creating a date
> (date? my-birthday) ← Using the type checker
#t
> (date? (make-date 1941 12 7)) #t
> (date? (make-vector 4)) #f
> (date-year my-birthday)) ← Accessing the contents
1958
> (date-month my-birthday) 10
> (date-day my-birthday) 22
> (set-date-month! my-birthday 11) ← Changing the contents
> my-birthday
#{i-am-a-date! 1958 11 22}
> (set-date-year! my-birthday 1968)
> my-birthday
#{i-am-a-date! 1968 11 22}
19.1 The define-struct Special Form

The preceding examples demonstrate that vectors can be used as data structures to store and manage any kind of data, and that a variety of functions can be defined to facilitate common tasks associated with using these vectors as data structures: constructing new instances of the data structures, and accessing or mutating their contents. Although these functions are not complicated, providing their definitions is both time-consuming and unilluminating. For this reason, Scheme provides a special form, called define-struct, that makes defining new data structures quite easy. In particular, evaluating a define-struct special form results in the automatic definition of all the needed constructor, accessor, mutator, and type-checker functions.

A define-struct special form has the following syntax:

\[
\text{(define-struct} \ structName \ (fname_1 \ fname_2 \ \ldots \.fname_k)\text{)}
\]

where:

- \(structName\) is a symbol that will be the name of the data structure; and
- \(fname_1, fname_2, \ldots, fname_k\) are \(k\) symbols that will be the names of the fields of the new data structure.

The semantics of the define-struct special form stipulates that its evaluation generates no output, but has the side effect of defining all of the following functions:

- a constructor function, named \(\text{make-structName}\);
- a type-checker predicated, named \(\text{structName?}\);
- \(k\) accessor functions, named \(\text{structName-fname}_1, \ldots, \text{structName-fname}_k\); and
- \(k\) mutator functions, named \(\text{set-structName-fname}_1!\, \ldots, \text{set-structName-fname}_k!\).

Example 19.1.1: Using define-struct to define a date data structure

The following expression is all that is needed to define a date data structure in Scheme:

\[
\text{(define-struct} \ date \ (year \ month \ day)\text{)}
\]

Its evaluation generates all of the following functions:

- **Constructor:** make-date
- **Type checker:** date?
- **Accessors:** date-year, date-month, date-day
- **Mutators:** set-date-year!, set-date-month!, set-date-day!

The following interactions demonstrate their use:

\[
> \text{(define-struct} \ date \ (year \ month \ day)\text{)}
> \text{(define my-bday (make-date 1958 10 22))}
> \text{(date-year my-bday)}
1958
> \text{(date-month my-bday)}
10
> \text{(set-date-year! my-bday 1978)}
> \text{(date-year my-bday)}
1978
> \text{my-bday}
\#<date>
\]
The last expression demonstrates that DrScheme is not terribly helpful when displaying instances of our new data structure: it just reports that it is such an instance. However, we can define our own display function, as follows.

;; PRINT-DATE
;; -------------------------------------------------------
;; INPUT: DATEY, an instance of a DATE data structure
;; OUTPUT: None
;; SIDE EFFECT: Displays the date stored in DATEY in
;; the following format: Month Day, Year.
(define print-date
  (lambda (datey)
    (printf "~A " ~A", ~A~%
      ;; Fetch name of month from *MONTHS* vector
      (vector-ref *months* (date-month datey))
      (date-day datey)
      (date-year datey))))

Here are some examples of its use:

> (print-date my-bday)
Oct 22, 1958
> (print-date (make-date 1941 12 7))
Dec 7, 1941

---

Example 19.1.2: Implementing a deck of cards

Below, we define a deck data structure that has two fields: cards and num-left. The cards field will be a vector that is partitioned into two sections, as illustrated in Fig. 19.1. The first section will contain
all of the cards that have not yet been dealt; the second section will contain those that have already been
dealt. Thus, the second section of the vector is effectively a “discard pile”. The num-left field serves
two purposes. First, it keeps track of the number of cards that have not yet been dealt (i.e., that remain
available for dealing). Second, it corresponds to the index at the top of the discard pile. For example, as
shown in the figure, suppose that there are ten cards in the deck and num-left is 6. This means that
there are six cards that have not yet been dealt. Those cards are located in the first part of the cards
vector, at positions 0, 1, ..., 5. The “discard pile” begins at index 6. The four cards in the discard pile
are at positions 6, 7, 8 and 9. In general, the cards available for dealing have indices between 0 and
(num-left – 1), while the discard pile starts at index num-left.

The deck data structure is defined below. Notice that it is preceded by a block of comments that
together specify the name of the data structure and, for each field, the name of that field along with a brief
explanation of what that field is for.

;;; A DECK data structure
;;; --------------------------------------------------------
;;; CARDS: A vector of cards
;;; NUM-LEFT: Number of cards still left in the deck
;;; (i.e., still available for dealing)
(define-struct deck (cards num-left))

For testing purposes, we define a print-deck function that prints out the entire contents of a deck
data structure. Later on (e.g., when using the deck data structure as part of a program that implements
a card game) we might define a different function that does not show the players the order of the cards in
the deck!

;;; PRINT-DECK
;;; --------------------------------------------------------
;;; INPUT: DECKY, a DECK data structure
;;; OUTPUT: None
;;; SIDE EFFECT: Displays contents of DECKY
(define print-deck
  (lambda (decky)
    (printf "Deck of cards: ~A, num-left: ~A~%"
            (deck-cards decky) (deck-num-left decky)))))

Next, we define a destructive function, called deal!, that deals one randomly chosen card from the deck.
To preserve the partition between undealt cards and the discard pile, the deck data structure is modified
as follows. First, the randomly selected card (i.e., the one to be dealt) is swapped with the card at the
bottom of the not-yet-dealt partition (i.e., the card whose index is (num-left – 1)). Next, the value of
the num-left field is decremented. In this way, the newly dealt card is effectively moved to the “top” of
the “discard pile”.

;;; DEAL!
;;; --------------------------------------------------------
;;; INPUT: DECKY, a DECK data structure
;;; OUTPUT: One of the cards from DECKY, selected
;;; at random
;;; SIDE EFFECT: Modifies DECKY so that the newly dealt
;;; card joins the "discard" pile (i.e., becomes dealt)
(define deal!
  (lambda (deeky)
    (let* ((num-lefty (deck-num-left deeky))
           (rnd-indy (random num-lefty))
           (veck-o-cards (deck-cards deeky))
           (dealt-card (vector-ref veck-o-cards rnd-indy))
           (indy-to-move (- num-lefty 1))
           (card-to-move (vector-ref veck-o-cards indy-to-move)))
      ;; Swap DEALT-CARD and CARD-TO-MOVE
      ;; (i.e., move newly dealt card into discard pile)
      (vector-set! veck-o-cards rnd-indy card-to-move)
      (vector-set! veck-o-cards indy-to-move dealt-card)
      ;; Decrement the NUM-LEFT field
      (set-deck-num-left! deeky indy-to-move)
      ;; Output:
      dealt-card)))

Because the deal! function randomly selects cards from those that have not yet been dealt, there is no need to simulate any “shuffling”; instead, shuffling the deck is simply a matter of resetting the num-left field so that all cards become available for dealing.

;;; SHUFFLE!
;;; ------------------------------------------------------
;;; INPUT: DECKY, a DECK data structure
;;; OUTPUT: None
;;; SIDE EFFECT: Makes all cards available for dealing

(define shuffle!
  (lambda (deeky)
    ;; Reset the NUM-LEFT field to its initial value
    (set-deck-num-left! deeky (vector-length (deck-cards deeky)))
    ;; Output the modified DECK
    deeky))

The following interactions demonstrate the use of the deck data structure, using a test deck that contains only ten cards.

> (define deeky (make-deck (vector 'a 'b 'c 'd 'e 'f 'g 'h 'i 'j) 10))
> (print-deck deeky)
Deck of cards: #(a b c d e f g h i j), num-left: 10
> (deal! deeky)
d
> (print-deck deeky)
Deck of cards: #(a b c j e f g h i d), num-left: 9
> (deal! decky)
e
> (print-deck decky)
Deck of cards: #(a b c j i f g h e d), num-left: 8
> (deal! decky)
c
> (print-deck decky)
Deck of cards: #(a b h j i f g c e d), num-left: 7
> (deal! decky)
g
> (print-deck decky)
Deck of cards: #(a b h j i f g c e d), num-left: 6
> (shuffle! decky)
#<deck>
> (print-deck decky)
Deck of cards: #(a b h j i f g c e d), num-left: 10
> (deal! decky)
a
> (print-deck decky)
Deck of cards: #(d b h j i f g c e a), num-left: 9

19.2 Summary

This chapter introduced field-based data structures (i.e., data structures whose slots (a.k.a. fields) are accessed by name). Although field-based data structures can be implemented using vectors, doing so requires a programmer to manually define a variety of constructor, accessor and mutator functions. To avoid such mundane tasks, Scheme provides the define-struct special form. The evaluation of a single define-struct special form automatically creates the needed constructor, accessor and mutator functions. The chapter illustrated the use of field-based data structures, first to represent dates, and second to represent a deck of cards.

Special Forms Introduced in this Chapter

define-struct  For specifying new data structures