The Eight Queens Problem

- **Problem**
 - Place eight queens on the chessboard so that no queen can attack any other queen
- **Strategy: guess at a solution**
 - There are 4,426,165,368 ways to arrange 8 queens on a chessboard of 64 squares

- **Providing organization for the guessing strategy**
 - Place queens one column at a time
 - If you reach an impasse, backtrack to the previous column

- **Backtracking**
 - A strategy for guessing at a solution and backing up when an impasse is reached
 - Recursion and backtracking can be combined to solve problems

- **An observation that eliminates many arrangements from consideration**
 - No queen can reside in a row or a column that contains another queen
 - Now: only 40,320 arrangements of queens to be checked for attacks along diagonals

Figure 6-1

a) Five queens that cannot attack each other, but that can attack all of column 6; b) backtracking to column 5 to try another square for the queen; c) backtracking to column 4 to try another square for the queen and then considering column 5 again
The Eight Queens Problem

- A recursive algorithm that places a queen in a column
 - Base case
 - If there are no more columns to consider
 - You are finished
 - Recursive step
 - If you successfully place a queen in the current column
 - Consider the next column
 - If you cannot place a queen in the current column
 - You need to backtrack

Defining Languages

- A language
 - A set of strings of symbols
 - Examples: English, Java
 - If a Java program is one long string of characters, the language Java Programs is defined as
 \[\text{Java Programs} = \{ \text{strings w : w is a syntactically correct Java program} \} \]

Defining Languages

- A language does not have to be a programming or a communication language
 - Example
 - The set of algebraic expressions
 \[\text{Algebraic Expressions} = \{ w : w \text{ is an algebraic expression} \} \]

The Basics of Grammars

- Grammar
 - States the rules for forming the strings in a language
- Benefit of recursive grammars
 - Ease of writing a recognition algorithm for the language
 - A recognition algorithm determines whether a given string is in the language
- Symbols used in grammars
 - \(x \mid y \) means \(x \) or \(y \)
 - \(x \circ y \) means \(x \) followed by \(y \)
 - In \(x \circ y \), the symbol \(\circ \) means concatenate, or append
 - \(< \text{ word } > \) means any instance of word that the definition defines
The Basics of Grammars

- **Java identifiers**
 - A Java identifier begins with a letter and is followed by zero or more letters and digits

```
Letter → Letter Digit
```

![Figure 6-3](image)
A syntax diagram for Java identifiers

The Basics of Grammars

- **Recognition algorithm**
 - `isId(w)` if (w is of length 1) {
 - if (w is a letter) {
 return true
 } else {
 return false
 }
 } else if (the last character of w is a letter or a digit) {
 return isId(w minus its last character)
 } else {
 return false
 }

Two Simple Languages:
Palindromes

- A string that reads the same from left to right as it does from right to left
- Examples: radar, deed
- **Language**
 Palindromes = \{ w : w reads the same left to right as right to left \}

Palindromes

- **Grammar**
 - `<pal>` = empty string | `<ch>` | a `<pal>` a | b `<pal>` b | ... | Z `<pal>` Z
 - `<ch>` = a | b | ... | z | A | B | ... | Z

```
<pal> = empty string | <ch> | a <pal> a | b <pal> b | ... | Z <pal> Z
<ch> = a | b | ... | z | A | B | ... | Z
```

Palindromes

- **Recognition algorithm**
 - `isPal(w)` if (w is the empty string or w is of length 1) {
 return true
 } else if (w’s first and last characters are the same letter) {
 return isPal(w minus its first and last characters)
 } else {
 return false
 }
Strings of the form A^nB^n

- A^nB^n:
 - The string that consists of n consecutive A’s followed by n consecutive B’s
- Language
 $$L = \{w : w \text{ is of the form } A^nB^n \text{ for some } n \geq 0\}$$
- Grammar
 $$\begin{align*}
 \langle \text{legal-word} \rangle &= \text{empty string} \mid A \langle \text{legal-word} \rangle B \\

 \end{align*}$$

Algebraic Expressions

- Three languages for algebraic expressions
 - Infix expressions
 - An operator appears between its operands
 - Example: $a + b$
 - Prefix expressions
 - An operator appears before its operands
 - Example: $+ a b$
 - Postfix expressions
 - An operator appears after its operands
 - Example: $a b +$

Recognition algorithm

```java
isAnBn(w) {
  if (the length of w is zero) {
    return true
  } else if (w begins with the character A and ends with the character B) {
    return isAnBn(w minus its first and last characters)
  } else {
    return false
  }
}
```

To convert a fully parenthesized infix expression to a prefix form

- Move each operator to the position marked by its corresponding open parenthesis
- Remove the parentheses
- Example
 - Infix expression: $((a + b) \times c$
 - Prefix expression: $+ a b c$

Prefix and postfix expressions

- Never need
 - Precendence rules
 - Association rules
 - Parentheses
- Have
 - Simple grammar expressions
 - Straightforward recognition and evaluation algorithms
Prefix Expressions

- **Grammar**
 < prefix > = < identifier > | < operator > < prefix >
 < operator > = + | - | * | /
 < identifier > = a | b | ... | z

- **A recognition algorithm**
  ```plaintext
  isPre()
  size = length of expression strExp
  lastChar = endPre(0, size - 1)
  if (lastChar >= 0 and lastChar == size-1) {return true}
  else if (ch is an identifier) {
    return value of the identifier
  } else if (ch is an operator named op) {
    operand1 = evaluatePrefix(strExp)
    operand2 = evaluatePrefix(strExp)
    return operand1 op operand2
  }
  ```

Postfix Expressions

- **Grammar**
 < postfix > = < identifier > | < postfix > < postfix > < operator>
 < operator > = + | - | * | /
 < identifier > = a | b | ... | z

- **At high-level, an algorithm that converts a prefix expression to postfix form**
  ```plaintext
  if (exp is a single letter) {
    return exp
  } else {
    return postfix(prefix1) + postfix(prefix2) + operator
  }
  ```

Fully Parenthesized Expressions

- **To avoid ambiguity, infix notation normally requires**
 - Precedence rules
 - Rules for association
 - Parentheses

- **Fully parenthesized expressions do not require**
 - Precedence rules
 - Rules for association

- **An algorithm that evaluates a prefix expression**
  ```plaintext
  evaluatePrefix(strExp)
  ch = first character of expression strExp
  Delete first character from strExp
  if (ch is an identifier) {
    return value of the identifier
  } else if (ch is an operator named op) {
    operand1 = evaluatePrefix(strExp)
    operand2 = evaluatePrefix(strExp)
    return operand1 op operand2
  }
  ```

- **A recursive algorithm that converts a prefix expression to postfix form**
  ```plaintext
  convert(pre)
  ch = first character of pre
  Delete first character of pre
  if (ch is a lowercase letter) {
    return ch as a string
  } else {
    postfix1 = convert(pre)
    postfix2 = convert(pre)
    return postfix1 + postfix2 + ch
  }
  ```

- **Fully parenthesized expressions**
 - A simple grammar
 < infix > = < identifier > | (< infix > < operator > < infix >)
 < operator > = + | - | * | /
 < identifier > = a | b | ... | z
 - Inconvenient for programmers
The Relationship Between Recursion and Mathematical Induction

- A strong relationship exists between recursion and mathematical induction.
- Induction can be used to
 - Prove properties about recursive algorithms.
 - Prove that a recursive algorithm performs a certain amount of work.

The Correctness of the Recursive Factorial Method

- Pseudocode for a recursive method that computes the factorial of a nonnegative integer n:

  ```java
  fact(n) {
    if (n is 0) {
      return 1
    } else {
      return n * fact(n - 1)
    }
  }
  ``

- Solution to the Towers of Hanoi problem:

  ```java
 solveTowers(count, source, destination, spare) {
 if (count is 1) {
 Move a disk directly from source to destination
 } else {
 solveTowers(count-1, source, spare, destination)
 solveTowers(1, source, destination, spare)
 solveTowers(count-1, spare, destination, source)
 }
 }
 ``

The Cost of Towers of Hanoi

- Question
 - If you begin with N disks, how many moves does `solveTowers` make to solve the problem?

- Let
 - `moves(N)` be the number of moves made starting with N disks.

- When N = 1
 - `moves(1) = 1`
The Cost of Towers of Hanoi

- A closed-form formula for the number of moves that `solveTowers` requires for N disks
 \[\text{moves}(N) = 2^N - 1, \text{for all } N \geq 1 \]
- Induction on N can provide the proof that
 \[\text{moves}(N) = 2^N - 1 \]

Summary

- Backtracking is a solution strategy that involves both recursion and a sequence of guesses that ultimately lead to a solution
- A grammar is a device for defining a language
 - A language is a set of strings of symbols
 - A recognition algorithm for a language can often be based directly on the grammar of the language
 - Grammars are frequently recursive

Summary

- Different languages of algebraic expressions have their relative advantages and disadvantages
 - Prefix expressions
 - Postfix expressions
 - Infix expressions
- A close relationship exists between mathematical induction and recursion
 - Induction can be used to prove properties about a recursive algorithm