Chapter 10
Algorithm Efficiency and Sorting
CS102 Sections 51 and 52
Marc Smith and Jim Ten Eyck
Spring 2008

Measuring the Efficiency of Algorithms

• Analysis of algorithms
 – Provides tools for contrasting the efficiency of different methods of solution

• A comparison of algorithms
 – Should focus on significant differences in efficiency
 – Should not consider reductions in computing costs due to clever coding tricks

The Execution Time of Algorithms

• Counting an algorithm's operations is a way to access its efficiency
 – An algorithm’s execution time is related to the number of operations it requires
 – Examples
 • Traversal of a linked list
 • The Towers of Hanoi
 • Nested Loops

Algorithm Growth Rates

• An algorithm’s time requirements can be measured as a function of the problem size
• An algorithm’s growth rate
 – Enables the comparison of one algorithm with another
 – Examples
 Algorithm A requires time proportional to n^2
 Algorithm B requires time proportional to n
• Algorithm efficiency is typically a concern for large problems only

Figure 10-1
Time requirements as a function of the problem size n
Order-of-Magnitude Analysis and Big O Notation

- **Definition of the order of an algorithm**
 Algorithm A is order \(f(n) \) – denoted \(O(f(n)) \) – if constants \(k \) and \(n_0 \) exist such that A requires no more than \(k \times f(n) \) time units to solve a problem of size \(n \geq n_0 \).

- **Growth-rate function**
 - A mathematical function used to specify an algorithm’s order in terms of the size of the problem

- **Big O notation**
 - A notation that uses the capital letter \(O \) to specify an algorithm’s order
 - Example: \(O(f(n)) \)

Order of growth of some common functions

\[
\begin{align*}
O(1) & < O(\log_2 n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)
\end{align*}
\]

Properties of growth-rate functions

- You can ignore low-order terms
- You can ignore a multiplicative constant in the high-order term
- \(O(f(n)) + O(g(n)) = O(f(n) + g(n)) \)

Worst-case and average-case analyses

- An algorithm can require different times to solve different problems of the same size
 - **Worst-case analysis**
 - A determination of the maximum amount of time that an algorithm requires to solve problems of size \(n \)
 - **Average-case analysis**
 - A determination of the average amount of time that an algorithm requires to solve problems of size \(n \)

Keeping Your Perspective

- Throughout the course of an analysis, keep in mind that you are interested only in significant differences in efficiency
- When choosing an ADT’s implementation, consider how frequently particular ADT operations occur in a given application
- Some seldom-used but critical operations must be efficient
Keeping Your Perspective

• If the problem size is always small, you can probably ignore an algorithm’s efficiency
• Weigh the trade-offs between an algorithm’s time requirements and its memory requirements
• Compare algorithms for both style and efficiency
• Order-of-magnitude analysis focuses on large problems

The Efficiency of Searching Algorithms

• Sequential search
 – Strategy
 • Look at each item in the data collection in turn, beginning with the first one
 • Stop when
 – You find the desired item
 – You reach the end of the data collection

• Binary search
 – Strategy
 • To search a sorted array for a particular item
 – Repeatedly divide the array in half
 – Determine which half the item must be in, if it is indeed present, and discard the other half
 – Efficiency
 • Worst case: $O(\log_2 n)$
 • For large arrays, the binary search has an enormous advantage over a sequential search

The Efficiency of Searching Algorithms

• Sequential search
 – Efficiency
 • Worst case: $O(n)$
 • Average case: $O(n)$
 • Best case: $O(1)$

Sorting Algorithms and Their Efficiency

• Sorting
 – A process that organizes a collection of data into either ascending or descending order
• Categories of sorting algorithms
 – An internal sort
 • Requires that the collection of data fit entirely in the computer’s main memory
 – An external sort
 • The collection of data will not fit in the computer’s main memory all at once but must reside in secondary storage

Sorting Algorithms and Their Efficiency

• Data items to be sorted can be
 – Integers
 – Character strings
 – Objects
• Sort key
 – The part of a record that determines the sorted order of the entire record within a collection of records
Selection Sort

- Selection sort
 - Strategy
 - Select the largest item and put it in its correct place
 - Select the next largest item and put it in its correct place, etc.

Shaded elements are selected; boldface elements are in order.

Initial array:	29 10 14 37 13
After 1st swap:	13 10 14 29 37
After 2nd swap:	13 10 14 29 37
After 3rd swap:	10 13 14 29 37
After 4th swap:	10 13 14 29 37

Figure 10-4
A selection sort of an array of five integers

Selection Sort

- Analysis
 - Selection sort is $O(n^2)$
- Advantage of selection sort
 - It does not depend on the initial arrangement of the data
- Disadvantage of selection sort
 - It is only appropriate for small n

Bubble Sort

- Bubble sort
 - Strategy
 - Compare adjacent elements and exchange them if they are out of order
 - Comparing the first two elements, the second and third elements, and so on, will move the largest (or smallest) elements to the end of the array
 - Repeating this process will eventually sort the array into ascending (or descending) order

Figure 10-5
The first two passes of a bubble sort of an array of five integers: a) pass 1; b) pass 2

Bubble Sort

- Analysis
 - Worst case: $O(n^2)$
 - Best case: $O(n)$

Insertion Sort

- Insertion sort
 - Strategy
 - Partition the array into two regions: sorted and unsorted
 - Take each item from the unsorted region and insert it into its correct order in the sorted region

Figure 10-6
An insertion sort partitions the array into two regions
Insertion Sort

- Analysis
 - Worst case: $O(n^2)$
 - For small arrays
 - Insertion sort is appropriate due to its simplicity
 - For large arrays
 - Insertion sort is prohibitively inefficient

Mergesort

- Important divide-and-conquer sorting algorithms
 - Mergesort
 - Quicksort
- Mergesort
 - A recursive sorting algorithm
 - Gives the same performance, regardless of the initial order of the array items
 - Strategy
 - Divide an array into halves
 - Sort each half
 - Merge the sorted halves into one sorted array

- Analysis
 - Worst case: $O(n \log_2 n)$
 - Average case: $O(n \log_2 n)$
 - Advantage
 - It is an extremely efficient algorithm with respect to time
 - Drawback
 - It requires a second array as large as the original array
Quicksort

- Quicksort
 - A divide-and-conquer algorithm
 - Strategy
 - Partition an array into items that are less than the pivot and those that are greater than or equal to the pivot
 - Sort the left section
 - Sort the right section

![Figure 10-12](image1)
A partition about a pivot

- Analysis
 - Worst case
 - quicksort is $O(n^2)$ when the array is already sorted and the smallest item is chosen as the pivot

![Figure 10-19](image2)
A worst-case partitioning with quicksort

- Analysis
 - Average case
 - quicksort is $O(n \cdot \log_2 n)$ when S_1 and S_2 contain the same – or nearly the same – number of items arranged at random

![Figure 10-20](image3)
A average-case partitioning with quicksort

Radix Sort

- Analysis
 - Radix sort
 - Treats each data element as a character string
 - Strategy
 - Repeatedly organize the data into groups according to the i^{th} character in each element
 - Analysis
 - Radix sort is $O(n)$
Radix Sort

<table>
<thead>
<tr>
<th>Original integers</th>
<th>Grouped by fourth digit</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0123, 2154, 0022, 0004, 0283, 1560, 1061, 2150)</td>
<td>(1560, 2150, 1061, 0283, 0123, 2032, 0004)</td>
<td>(1560, 0234, 1234, 0004, 2034)</td>
</tr>
<tr>
<td>(0004, 0232, 0123, 2034, 2150, 2154)</td>
<td>(1560, 1061, 0283)</td>
<td>(0004, 0123, 0234, 2032)</td>
</tr>
<tr>
<td>(0004, 0123, 0234, 2032, 2150, 2154)</td>
<td>(1560, 0234, 1234, 0004, 2034)</td>
<td>(0004, 0123, 0234, 2032, 2150, 2154)</td>
</tr>
</tbody>
</table>

Figure 10-21
A radix sort of eight integers

A Comparison of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst case</th>
<th>Average case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Bubble sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Insertion sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Mergesort</td>
<td>$n \cdot \log n$</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Quicksort</td>
<td>n^2</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Radix sort</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Treesort</td>
<td>n^2</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Heapsort</td>
<td>$n \cdot \log n$</td>
<td>$n \cdot \log n$</td>
</tr>
</tbody>
</table>

Figure 10-22
Approximate growth rates of time required for eight sorting algorithms

Summary

- Order-of-magnitude analysis and Big O notation measure an algorithm’s time requirement as a function of the problem size by using a growth-rate function
- To compare the inherit efficiency of algorithms
 - Examine their growth-rate functions when the problems are large
 - Consider only significant differences in growth-rate functions
- Worst-case and average-case analyses
 - Worst-case analysis considers the maximum amount of work an algorithm requires on a problem of a given size
 - Average-case analysis considers the expected amount of work an algorithm requires on a problem of a given size
- Order-of-magnitude analysis can be used to choose an implementation for an abstract data type
- Selection sort, bubble sort, and insertion sort are all $O(n^2)$ algorithms
- Quicksort and mergesort are two very efficient sorting algorithms