Chapter 11

Trees

CS102 Sections 51 and 52
Marc Smith and Jim Ten Eyck
Spring 2008

Terminology

• Definition of a general tree
 – A general tree T is a set of one or more nodes such that T is partitioned into disjoint subsets:
 • A single node r, the root
 • Sets that are general trees, called subtrees of r

• Definition of a binary tree
 – A binary tree is a set T of nodes such that either
 • T is empty, or
 • T is partitioned into three disjoint subsets:
 – A single node r, the root
 – Two possibly empty sets that are binary trees, called left and right subtrees of r

Figure 11-4
Binary trees that represent algebraic expressions

Figure 11-5
A binary search tree of names

Terminology

• The height of trees
 – Level of a node n in a tree T
 • If n is the root of T, it is at level 1
 • If n is not the root of T, its level is 1 greater than the level of its parent
 – Height of a tree T defined in terms of the levels of its nodes
 • If T is empty, its height is 0
 • If T is not empty, its height is equal to the maximum level of its nodes

Figure 11-6
Binary trees with the same nodes but different heights
Terminology

• Full, complete, and balanced binary trees
 – Recursive definition of a full binary tree
 • If T is empty, T is a full binary tree of height 0
 • If T is not empty and has height h > 0, T is a full binary tree if
 its root’s subtrees are both full binary trees of height h – 1

Terminology

• Complete binary trees
 – A binary tree T of height h is complete if
 • All nodes at level h – 2 and above have two children each, and
 • When a node at level h – 1 has children, all nodes to its left at the
 same level have two children each, and
 • When a node at level h – 1 has one child, it is a left child

Terminology

• Balanced binary trees
 – A binary tree is balanced if the height of any node’s
 right subtree differs from the height of the node’s left
 subtree by no more than 1
• Full binary trees are complete
• Complete binary trees are balanced

Terminology

• Summary of tree terminology
 – General tree
 • A set of one or more nodes, partitioned into a root node and
 subtrees that are general subtrees of the root
 – Parent of node n
 • The node directly above node n in the tree
 – Child of node n
 • A node directly below node n in the tree
 – Root
 • The only node in the tree with no parent

Terminology

• Summary of tree terminology (Continued)
 – Leaf
 • A node with no children
 – Siblings
 • Nodes with a common parent
 – Ancestor of node n
 • A node on the path from the root to n
 – Descendant of node n
 • A node on a path from n to a leaf
 – Subtree of node n
 • A tree that consists of a child (if any) of n and the child’s
descendants

Terminology

• Summary of tree terminology (Continued)
 – Height
 • The number of nodes on the longest path from the root to a leaf
 – Binary tree
 • A set of nodes that is either empty or partitioned into a root
 node and one or two subtrees that are binary subtrees of the root
 Each node has at most two children, the left child and the right
 child
 • Left (right) child of node n
 • A node directly below and to the left (right) of node n in a
 binary tree
Terminology

• Summary of tree terminology (Continued)
 – Left (right) subtree of node n
 • In a binary tree, the left (right) child (if any) of node n plus its descendants
 – Binary search tree
 • A binary tree where the value in any node n is greater than the value in every node in n’s left subtree, but less than the value of every node in n’s right subtree
 – Empty binary tree
 • A binary tree with no nodes

The ADT Binary Tree: Basic Operations of the ADT Binary Tree

• The operations available for a particular ADT binary tree depend on the type of binary tree being implemented
• Basic operations of the ADT binary tree
 – createBinaryTree()
 – createBinaryTree(rootItem)
 – makeEmpty()
 – isEmpty()
 – getRootItem() throws TreeException

Traversals of a Binary Tree

• A traversal algorithm for a binary tree visits each node in the tree
• Recursive traversal algorithms
 – Preorder traversal
 – Inorder traversal
 – Postorder traversal
• Traversal is O(n)
Possible Representations of a Binary Tree

- An array-based representation
 - A Java class is used to define a node in the tree
 - A binary tree is represented by using an array of tree nodes
 - Each tree node contains a data portion and two indexes (one for each of the node’s children)
 - Requires the creation of a free list which keeps track of available nodes

Possible Representations of a Binary Tree

- An array-based representation of a complete tree
 - If the binary tree is complete and remains complete
 - A memory-efficient array-based implementation can be used

Possible Representations of a Binary Tree

- A reference-based representation
 - Java references can be used to link the nodes in the tree

A Reference-Based Implementation of the ADT Binary Tree

- Classes that provide a reference-based implementation for the ADT binary tree
 - TreeNode
 - Represents a node in a binary tree
 - TreeException
 - An exception class
 - BinaryTree
 - An abstract class of basic tree operation
 - BinaryTree
 - Provides the general operations of a binary tree
 - Extends BinaryTreeBase
Tree Traversals Using an Iterator

- **TreeIterator**
 - Implements the Java *Iterator* interface
 - Provides methods to set the iterator to the type of traversal desired
 - Uses a queue to maintain the current traversal of the nodes in the tree
- **Nonrecursive traversal (optional)**
 - An iterative method and an explicit stack can be used to mimic actions at a return from a recursive call to *inorder*

The ADT Binary Search Tree

- **Record**
 - A group of related items, called fields, that are not necessarily of the same data type
- **Field**
 - A data element within a record
- **A data item in a binary search tree has a specially designated search key**
 - A search key is the part of a record that identifies it within a collection of records
- **KeyedItem class**
 - Contains the search key as a data field and a method for accessing the search key
 - Must be extended by classes for items that are in a binary search tree

Algorithms for the Operations of the ADT Binary Search Tree

- **Since the binary search tree is recursive in nature, it is natural to formulate recursive algorithms for its operations**
- **A search algorithm**
 - search(bst, searchKey)
 - Searches the binary search tree *bst* for the item whose search key is *searchKey*

Algorithms for the Operations of the ADT Binary Search Tree: Insertion

- **insertItem(treeNode, newItem)**
 - Inserts *newItem* into the binary search tree of which *treeNode* is the root
Algorithms for the Operations of the ADT Binary Search Tree: Insertion

Figure 11-23c

c) Insertion at a leaf

Algorithms for the Operations of the ADT Binary Search Tree: Deletion

- Steps for deletion
 - Use the search algorithm to locate the item with the specified key
 - If the item is found, remove the item from the tree

- Three possible cases for node N containing the item to be deleted
 - N is a leaf
 - N has only one child
 - N has two children

Algorithms for the Operations of the ADT Binary Search Tree: Retrieval

- Retrieval operation can be implemented by refining the search algorithm
 - Return the item with the desired search key if it exists
 - Otherwise, return a null reference

Algorithms for the Operations of the ADT Binary Search Tree: Traversal

- Traversals for a binary search tree are the same as the traversals for a binary tree
- Theorem 11-1
 - The inorder traversal of a binary search tree T will visit its nodes in sorted search-key order

A Reference-Based Implementation of the ADT Binary Search Tree

- BinarySearchTree
 - Extends BinaryTreeBasis
 - Inherits the following from BinaryTreeBasis
 - isEmpty()
 - makeEmpty()
 - getRootItem()
 - The use of the constructors

- TreeIterator
 - Can be used with BinarySearchTree
The Efficiency of Binary Search Tree Operations

- The maximum number of comparisons for a retrieval, insertion, or deletion is the height of the tree
- The maximum and minimum heights of a binary search tree
 - n is the maximum height of a binary tree with n nodes

![Figure 11-30](image)

A maximum-height binary tree with seven nodes

The Efficiency of Binary Search Tree Operations

- Theorem 11-2
 A full binary tree of height $h \geq 0$ has $2^h - 1$ nodes
- Theorem 11-3
 The maximum number of nodes that a binary tree of height h can have is $2^h - 1$

![Figure 11-32](image)

Counting the nodes in a full binary tree of height h

The Efficiency of Binary Search Tree Operations

- Theorem 11-4
 The minimum height of a binary tree with n nodes is $\lceil \log_2(n+1) \rceil$
- The height of a particular binary search tree depends on the order in which insertion and deletion operations are performed

<table>
<thead>
<tr>
<th>Operation</th>
<th>Average case</th>
<th>Worst case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieval</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Insertion</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Deletion</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Traversal</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

![Figure 11-34](image)

The order of the retrieval, insertion, deletion, and traversal operations for the reference-based implementation of the ADT binary search tree

Treesort

- Treesort
 - Uses the ADT binary search tree to sort an array of records into search-key order
 - Efficiency
 - Average case: $O(n \cdot \log n)$
 - Worst case: $O(n^2)$

Saving a Binary Search Tree in a File

- Two algorithms for saving and restoring a binary search tree
 - Saving a binary search tree and then restoring it to its original shape
 - Uses preorder traversal to save the tree to a file
 - Saving a binary search tree and then restoring it to a balanced shape
 - Uses inorder traversal to save the tree to a file
 - Can be accomplished if
 - The data is sorted
 - The number of nodes in the tree is known

The JCF Binary Search Algorithm

- JCF has two binary search methods
 - Based on the natural ordering of elements:
    ```java
    static <T> int binarySearch (List<T> extends Comparable<T> list, T key)
    ```
 - Based on a specified Comparator:
    ```java
    static <T> int binarySearch (List<T> extends Comparator<T> list, T key,
                                Comparator<T> c)
    ```
General Trees

- An n-ary tree
 - A generalization of a binary tree whose nodes each can have no more than n children

![Figure 11-38](image)
A general tree

![Figure 11-41](image)
An implementation of the n-ary tree in Figure 11-38

Summary

- Binary trees provide a hierarchical organization of data
- Implementation of binary trees
 - The implementation of a binary tree is usually referenced-based
 - If the binary tree is complete, an efficient array-based implementation is possible
- Traversing a tree is a useful operation
- The binary search tree allows you to use a binary search-like algorithm to search for an item with a specified value

Summary

- Binary search trees come in many shapes
 - The height of a binary search tree with n nodes can range from a minimum of \(\log_2(n + 1) \) to a maximum of n
 - The shape of a binary search tree determines the efficiency of its operations
- An inorder traversal of a binary search tree visits the tree’s nodes in sorted search-key order
- The treesort algorithm efficiently sorts an array by using the binary search tree’s insertion and traversal operations

Summary

- Saving a binary search tree to a file
 - To restore the tree as a binary search tree of minimum height
 - Perform inorder traversal while saving the tree to a file
 - To restore the tree to its original form
 - Perform preorder traversal while saving the tree to a file