Chapter 8

Queues

© 2006 Pearson Addison-Wesley. Al rights reserved 8A-1

The Abstract Data Type Queue

* A queue
— New items enter at the back, or rear, of the queue
— Items leave from the front of the queue
— First-in, first-out (FIFO) property

e The first item inserted into a queue is the first item
to leave

© 2006 Pearson Addison-Wesley. All rights reserved 8A2

The Abstract Data Type Queue

* ADT queue operations
— Create an empty queue
— Determine whether a queue is empty
— Add a new item to the queue

— Remove from the queue the item that was added
earliest

— Remove all the items from the queue

— Retrieve from the queue the item that was added
earliest

© 2006 Pearson Addison-Wesley. All rights reserved 8A3

The Abstract Data Type Queue

¢ Queues
— Are appropriate for many real-world situations
» Example: A line to buy a movie ticket
— Have applications in computer science
* Example: A request to print a document
* A simulation

— Discrete event simulator

© 2006 Pearson Addison-Wesley. All rights reserved 8A4

The Abstract Data Type Queue

* Pseudocode for the ADT queue operations
createQueue ()
// Creates an empty queue.

isEmpty ()
// Determines whether a queue is empty

enqueue (newltem) throws QueueException

// Adds newItem at the back of a queue. Throws
// QueueException if the operation is not

// successful

© 2006 Pearson Addison-Wesley. All rights reserved 8A5

The Abstract Data Type Queue

* Pseudocode for the ADT queue operations (Cont)
dequeue () throws QueueException
// Retrieves and removes the front of a queue.
// Throws QueueException if the operation is
// not successful.

dequeueAll ()
// Removes all items from a queue

peek () throws QueueException

// Retrieves the front of a queue. Throws
// QueueException if the retrieval is not
// successful

© 2006 Pearson Addison-Wesley. All rights reserved 8A6

The Abstract Data Type Queue

Operation Queue after operation

Front
queue.createQueue() i

queue.enqueue(5)
queue.enqueue(2)
queue.enqueue(7)

SRV, T N

2

27

2 7 (queueFront is 5)
27

7

queueFront = queue.peek()

queueFront = queue.dequeue() (queueFront is 5)
queueFront = queue.dequeue() (queueFront is 2)
Figure 8-2

Some queue operations

© 2006 Pearson Addison-Wesley. All rights reserved 8A7

Simple Applications of the ADT
Queue: Reading a String of
Characters

* A queue can retain characters in the order in
which they are typed

queue.createQueue ()
while (not end of line) {
Read a new character ch
queue.enqueue (ch)
}
* Once the characters are in a queue, the system can

process them as necessary

© 2006 Pearson Addison-Wesley. All rights reserved 8A8

Recognizing Palindromes

* A palindrome
— A string of characters that reads the same from left to
right as its does from right to left
* To recognize a palindrome, a queue can be used in
conjunction with a stack
— A stack can be used to reverse the order of occurrences

— A queue can be used to preserve the order of
occurrences

© 2006 Pearson Addison-Wesley. All rights reserved 8A-9

Recognizing Palindromes

String: abcbd

¢ A nonrecursive

recognition algorithm for
. : bcbd
palindromes Queve

— As you traverse the
character string from left to
right, insert each character
into both a queue and a

Front Back

Stack: d |<Top
stack b
— Compare the characters at E
the front of the queue and a
the top of the stack .
Figure 8-3

The results of inserting a string
into both a queue and a stack

© 2006 Pearson Addison-Wesley. All rights reserved 8A-10

Implementations of the ADT
Queue

* A queue can have either
— An array-based implementation

— A reference-based implementation

© 2006 Pearson Addison-Wesley. All rights reserved 8A-11

A Reference-Based
Implementation

* Possible implementations of a queue

— A linear linked list with two external references
¢ A reference to the front
¢ A reference to the back

o Ll A L+]

Figure 8-4a firstNode lastNode

A reference-based implementation of a queue: a) a linear linked list with two
external references

© 2006 Pearson Addison-Wesley. All rights reserved 8A-12

A Reference-Based
Implementation
* Possible implementations of a queue (Continued)

— A circular linked list with one external reference
* A reference to the back

[|
o LAl - T 1M

Figure 8-4b lastNode

A reference-based implementation of a queue: b) a circular linear linked list with one
external reference

© 2006 Pearson Addison-Wesley. Al rights reserved 8A-13

A Reference-Based
Implementation

(: 1. newNode.setNext (lastNode.getNext());
- 2. lastNode.setNext (newNode);
|2|,_|_.|4|,_|,,|1|,_|,,| | ; 3| 3. lastlode = newode;
€]

7
A

4©

lastNode newNode (references new node)

Figure 8-5

Inserting an item into a nonempty queue

© 2006 Pearson Addison-Wesley. Al rights reserved 8A-14

A Reference-Based
Implementation

A Reference-Based
Implementation

/ (2
@ ®) ¥ l 1. firstNode = lastNode.getNext();
3 newNode.setNext (newNode) ; | 2 | ﬁ—|—>| 4 | -—|—>| 1 | .—|—>| 7 | 2. lastNode.setNext(firstNode.getNext());
lastNode = newNode;
0]
A
lastNode newNode lastNode newNode firstNode lastNode
Figure 8-6 Figure 8-7
Inserting an item into an empty queue: a) before insertion; b) after insertion Deleting an item from a queue of more than one item
,;:,‘(’ © 2006 Pearson Addison-Wesley. All rights reserved 8 A-15 'i';. © 2006 Pearson Addison-Wesley. All rights reserved 8 A-16
front
* A circular array MAX_QUEUE -1
items . .
, eliminates the
a) 2 4 1 7 1
front back 0 1 2 3 MAX_QUEUE - 1 <«— Array indexes prOblem Of
rightward drift 2
items
o o] [LT TeJe]]
front back 0 1 47 48 49
MAX OUEUE - 1
Figure 8-8)
a) A naive array-based implementation of a queue; b) rightward drift can cause the F'gure 8-9
queue to appear full A circular implementation of a queue
";1'4., © 2006 Pearson Addison-Wesley. All rights reserved 8 A-17 ";2'4., © 2006 Pearson Addison-Wesley. All rights reserved 8 A-18

An Array-Based Implementation

Delete Delete Insert 9

MAX_QUEUE - 1 0 front yax QUEUE- 1 0

front
D—

back back

Figure 8-10
The effect of some operations of the queue in Figure 8-8

© 2006 Pearson Addison-Wesley. All rights reserved 8A-19

An Array-Based Implementation

* A problem with the circular array implementation

- front and back cannot be used to distinguish
between queue-full and queue-empty conditions

© 2006 Pearson Addison-Wesley. All rights reserved 8A-20

An Array-Based Implementation

Queue with single item —— Delete item—queue becomes empty

MAX_QUEUE — MAX_QUEUE —1 0
)
5 2
4b 2
front 4 T 3

back back
front

Figure 8-11a
a) front passes back when the queue becomes empty

© 2006 Pearson Addison-Wesley. All rights reserved 8A21

An Array-Based Implementation

Queue with single empty slot ————— Insert 9—queue becomes full

MAX QUEUE -1 MAX QUEUE =1

&y TR
S

‘b Sa 2
front front 4 T 3
back back
Figure 8-11b
b) back catches up to front when the queue becomes full
© 2006 Pearson Addison-Wesley. Al rights reserved 8 A-22

An Array-Based Implementation

* To detect queue-full and queue-empty conditions
— Keep a count of the queue items

* To initialize the queue, set
- frontto0
- backtoMAX QUEUE - 1

- countto0

© 2006 Pearson Addison-Wesley. All rights reserved 8A-23

An Array-Based Implementation

* Inserting into a queue
back = (back+l) % MAX QUEUE;
items [back] = newlItem;
count++;

e Deleting from a queue
front = (front+l) % MAX QUEUE;
count--;

© 2006 Pearson Addison-Wesley. All rights reserved 8A-24

An Array-Based Implementation

* Variations of the array-based implementation

— Use a flag full to distinguish between the full and
empty conditions
— Declare MAX QUEUE + 1 locations for the array

items, but use only MAX QUEUE of them for queue
items

© 2006 Pearson Addison-Wesley. All rights reserved

8A-25

An Array-Based Implementation

MAX_QUEUE MAX QUEUE
J | Figure 8-12
7 0 7 0

A more efficient circular

6 he 1 6 1 implementation: a) a full
v. queue; b) an empty queue
by :

r T
front

back front
back

(a) (b)

2 5

A

© 2006 Pearson Addison-Wesley. All rights reserved 8A-26

An Implementation That Uses the
ADT List

e If the item in position 1 of alist 1ist
represents the front of the queue, the
following implementations can be used

—dequeue ()
list.remove (1)

—peek()
list.get (1)

© 2006 Pearson Addison-Wesley. All rights reserved 8 A-27

An Implementation That Uses the
ADT List

e If the item at the end of the list represents the back
of the queue, the following implementations can
be used

— enqueue (newltem)
list.add(list.size()+1, newlItem)

Front of queue Back of queue

2417

Position in list—»1 2 3 4
Figure 8-13

An implementation that uses the ADT list

© 2006 Pearson Addison-Wesley. All rights reserved 8A-28

The Java Collections Framework
Interface Queue

¢ JCF has a queue interface called Queue
¢ Derived from interface Collection
¢ Adds methods:

- element: retrieves, but does not remove head
- offer: inserts element into queue

- peek: retrieves, but does not remove head

- poll: retrieves and removes head

- remove: retrieves and removes head

© 2006 Pearson Addison-Wesley. All rights reserved 8A-29

Comparing Implementations

 All of the implementations of the ADT queue
mentioned are ultimately either
— Array based
— Reference based

* Fixed size versus dynamic size

— A statically allocated array

¢ Prevents the enqueue operation from adding an item to the
queue if the array is full

— A resizable array or a reference-based implementation
* Does not impose this restriction on the enqueue operation

© 2006 Pearson Addison-Wesley. All rights reserved 8A-30

Comparing Implementations

* Reference-based implementations
— A linked list implementation
* More efficient
— The ADT list implementation

* Simpler to write

w“§ © 2006 Pearson Addison-Wesley. Al rights reserved

A Summary of Position-Oriented
ADTs

* Position-oriented ADTs

— List

— Stack

— Queue
» Stacks and queues

— Only the end positions can be accessed
* Lists

— All positions can be accessed

w“§ © 2006 Pearson Addison-Wesley. Al rights reserved

A Summary of Position-Oriented
ADTs

 Stacks and queues are very similar
— Operations of stacks and queues can be paired
off as

e createStack and createQueue
* Stack isEmpty and queue isEmpty
* push and enqueue

* pop and dequeue

 Stack peek and queue peek

© 2006 Pearson Addison-Wesley. All rights reserved

A Summary of Position-Oriented
ADTs

* ADT list operations generalize stack and
queue operations
- length
—add
—remove

- get

© 2006 Pearson A

w§ Addison-Wesley. All rights reserved

Application: Simulation

e Simulation

— A technique for modeling the behavior of both
natural and human-made systems

— Goal

* Generate statistics that summarize the performance
of an existing system

* Predict the performance of a proposed system
— Example

¢ A simulation of the behavior of a bank

© 2006 Pearson Addison-Wesley. All rights reserved

Application: Simulation

| o i

time =0

Teller

1@ ¥ LA

C, Teller

Figure 8-14a and 8-14b
Ablank line at at time a) 0; b) 12

© 2006 Pearson Addison-Wesley. All rights reserved

Application: Simulation

time = 20

&) < Teller
.| @

time = 38
G Teller

Figure 8-14c and 8-14d

A blank line at at time c) 20; d) 38
2006 Pearson Addison-Wesley. All rights reserved 8A-37

Application: Simulation

¢ An event-driven simulation
— Simulated time is advanced to the time of the next event
— Events are generated by a mathematical model that is based on
statistics and probability
¢ A time-driven simulation
— Simulated time is advanced by a single time unit

— The time of an event, such as an arrival or departure, is determined
randomly and compared with a simulated clock

2006 Pearson Addison-Wesley. Al rights reserved 8A-38

Application: Simulation

¢ The bank simulation is concerned with
— Arrival events
* Indicate the arrival at the bank of a new customer

« External events: the input file specifies the times at which the arrival
events occur

— Departure events
* Indicate the departure from the bank of a customer who has
completed a transaction
« Internal events: the simulation determines the times at which the
departure events occur

2006 Pearson A y. Al rights reserved 8 A-39

Application: Simulation

¢ Anevent list is needed to implement an event-driven
simulation
— Anevent list

* Keeps track of arrival and departure events that will occur but have
not occurred yet

« Contains at most one arrival event and one departure event

4 .
Figure 8-15
A typical instance
Arrival event ——>| A | Arrival time | Transaction time vP
of the event list
Departure event —H| D | Departure time |
-

2006 Pearson Addis

y. Al rights reserved 8 A-40

Summary

¢ The definition of the queue operations gives the ADT
queue first-in, first-out (FIFO) behavior
¢ A reference-based implementation of a queue uses either
— A circular linked list
— A linear linked list with a head reference and a tail reference
¢ An array-based implementation of a queue is prone to
rightward drift
— A circular array eliminates the problem of rightward drift

2006 Pearson Addison-Wesley. Al rights reserved 8 A-41

Summary

¢ To distinguish between the queue-full and queue-empty
conditions in a queue implementation that uses a circular
array, you can
— Count the number of items in the queue
— Usea full flag
— Leave one array location empty
¢ Models of real-world systems often use queues

— The event-driven simulation in this chapter uses a queue to model
a line of customers in a bank

2006 Pearson Addison-Wesley. Al rights reserved 8A-42

Summary

¢ Simulations
— Central to a simulation is the notion of simulated time
* In a time-driven simulation
— Simulated time is advanced by a single time unit
¢ In an event-driven simulation
— Simulated time is advanced to the time of the next event
— To implement an event-driven simulation, you maintain an event
list that contains events that have not yet occurred

2006 Pearson Addison-Wesley. Al rights reserved 8A-43

