. : Chapter 10

Algorithm Efficiency and
Sorting

© 2006 Pearson Addison-Wesley. All rights reserved 10 A-1

Measuring the Efficiency of
Algorithms

* Analysis of algorithms

— contrasts the efficiency of different methods of solution
* A comparison of algorithms

— Should focus of significant differences in efficiency

— Should not consider reductions in computing costs due
to clever coding tricks

2006 Pearson Addison-Wesley. Al rights reserved 10 A-2

The Execution Time of
Algorithms

* Counting an algorithm's operations is a way to
access its efficiency

— An algorithm’s execution time is related to the number
of operations it requires

2006 Pearson Addison-Wesley. Al rights reserved 10A-3

Algorithm Growth Rates

* An algorithm’s time requirements can be
measured as a function of the input size

* Algorithm efficiency is typically a concern
for large data sets only

2006 Pearson Addison-Wesley. Al rights reserved 10 A4

Algorithm Growth Rates

Algorithm A requires n%/5 seconds

Algorithm B requires 5*n seconds

Seconds

] 2
Figure 10-1

Time requirements as a function of the problem size n

2006 Pearson Addison-Wesley. Al rights reserved 10 A5

Order-of-Magnitude Analysis and
Big O Notation

* Definition of the order of an algorithm

Algorithm A is order f(n) — denoted O(f(n)) — if
constants k and n,, exist such that A requires no
more than k * f(n) time units to solve a problem
of sizen=n,
* Big O notation
— A notation that uses the capital letter O to
specify an algorithm’s order

— Example: O(f(n))

2006 Pearson Addison-Wesley. Al rights reserved 10A-6

Order-of-Magnitude Analysis and
Big O Notation

b)

100 2" n? n?
n *log,n
5 5
5
2
2
e
£
T 50
s
5
5
2
E-
> 25
n
s - — log,n
5 10 15 20
Figure 10-3b
A comparison of growth-rate functions: b) in graphical form
© 2006 Pearson Addison-Wesley. All rights reserved 10 A-7

Order-of-Magnitude Analysis and
Big O Notation

* Order of growth of some common functions
0O(1) < O(log,n) < O(n) < O(nlog,n) < O(n?) < O(n’) < O(2")
* Properties of growth-rate functions
— You can ignore low-order terms

— You can ignore a multiplicative constant in the high-
order term

— O(f(n)) + O(g(n)) = O(f(n) + g(n))

© 2006 Pearson Addison-Wesley. Al rights reserved 10A-8

Order-of-Magnitude Analysis and
Big O Notation

* Worst-case analyses

— An algorithm can require different times to solve
different problems of the same size
» Worst-case analysis

— A determination of the maximum amount of time that an
algorithm requires to solve problems of size n

© 2006 Pearson Addison-Wesley. Al rights reserved 10 A-9

The Efficiency of Searching
Algorithms

* Sequential search
— Strategy
¢ Look at each item in the data collection in turn,
beginning with the first one
 Stop when
— You find the desired item
— You reach the end of the data collection

© 2006 Pearson Addison-Wesley. Al rights reserved 10 A-10

The Efficiency of Searching
Algorithms

* Sequential search
— Efficiency
e Worst case: O(n)
* Average case: O(n)
¢ Best case: O(1)

© 2006 Pearson Addison-Wesley. Al rights reserved 10 A-11

The Efficiency of Searching
Algorithms

* Binary search
— Strategy

* To search a sorted array for a particular item
— Repeatedly divide the array in half

— Determine which half the item must be in, if it is indeed
present, and discard the other half

— Efficiency
* Worst case: O(log,n)

© 2006 Pearson Addison-Wesley. Al rights reserved 10 A-12

Sorting Algorithms and Their
Efficiency

e Sorting
— A process that organizes a collection of data into either
ascending or descending order
* Categories of sorting algorithms

— An internal sort

* Requires that the collection of data fit entirely in the
computer’s main memory

— An external sort

¢ The collection of data will not fit in the computer’s main
memory all at once but must reside in secondary storage

2006 Pearson Addison-Wesley. Al rights reserved 10 A-13

Sorting Algorithms and Their
Efficiency

e Data items to be sorted can be
— Integers
— Character strings
— Objects

* Sort key

— The part of a record that determines the sorted order of
the entire record within a collection of records

2006 Pearson Addison-Wesley. Al rights reserved 10 A-14

Selection Sort

¢ Selection sort
— Strategy

¢ Select the largest item and put it in its correct place
¢ Select the next largest item and put it in its correct place, etc.

Shaded elements are selected;
boldface elements are in order.

Figure 10-4

A selection sort of an array

e (] 10 [T 29]37]
seatsio (0] 1]1a 28] 37]

2006 Pearson Addisc

ley. All rights reserved 10 A1

Selection Sort

* Analysis

— Selection sort is O(n?)
* Advantage of selection sort

— It does not depend on the initial arrangement of the data
» Disadvantage of selection sort

— It is only appropriate for small n

sley. All rights reserved 10 A-16

Bubble Sort

* Bubble sort
— Strategy
» Compare adjacent elements and exchange them if
they are out of order

— Comparing the first two elements, the second and third
elements, and so on, will move the largest (or smallest)
elements to the end of the array

— Repeating this process will eventually sort the array into
ascending (or descending) order

2006 Pearson Addison-Wesley. Al rights reserved 10 A-17

Bubble Sort

(a) Pass 1 (b) Pass 2

mnitial amay: - [29[10]14[37[13] [10]14]29[13]37]

[10[29]14]37[13] [10[14]29]13]37]

[10[14[29]37{13] [10]14[29]13]37]

[10[14]29]37]13] [10]14]13]29]37]

[10]14]29]13[37]

Figure 10-5
The first two passes of a bubble sort of an array of five integers: a) pass 1;
b) pass 2

2006 Pearson Addison-Wesley. Al rights reserved 10 A-18

Bubble Sort

* Analysis
— Worst case: O(n2)
— Best case: O(n)

2006 Pearson Addison-Wesley. Al rights reserved 10 A-19

Insertion Sort

¢ Insertion sort
— Strategy

* Partition the array into two regions: sorted and unsorted
* Take each item from the unsorted region and insert it into its
correct order in the sorted region

Sorted Unsorted

After i iterations

Figure 10-6
An insertion sort partitions the array into two regions

2006 Pearson Addison-Wesley. Al rights reserved 10 A-20

Insertion Sort
Initial array: m Copy 10

[10]29 [1a]37[13]

Shift 29

Insert 10; copy 14

Shift 29

Copy 13
shift 37, 29, 14
sotd oy ner 13

Figure 10-7

An insertion sort of an array of five integers.

2006 Pearson A

ddison-Wesley. All rights reserved 10 A-21

Insertion Sort

* Analysis
— Worst case: O(n2)
— For small arrays
* Insertion sort is appropriate due to its simplicity
— For large arrays

* Insertion sort is prohibitively inefficient

2006 Pearson Addis

n-Wesley. All rights reserved 10 A-22

Mergesort

¢ Important divide-and-conquer sorting algorithms
— Mergesort
— Quicksort
* Mergesort
— A recursive sorting algorithm
— Gives the same performance, regardless of the initial order of the
array items
— Strategy
* Divide an array into halves
* Sort each half
¢ Merge the sorted halves into one sorted array

2006 Pearson Addison-Wesley. Al rights reserved 10 A-23

Mergesort
ehenrray: [8] 1[4]3] 2]

Divide the array in half

Sort the halves

Merge the halves:
a.1<2,s0move 1 from left half to tempArray
b. 4> 2, so move 2 from right half to tempArray
c. 4> 3, so move 3 from right half to tempArray
d. Right half is finished, so move rest of left
half to tempArray

Temporary array
tempArray:

Copy temporary array back into
original array

theArray: 1121348

Figure 10-8
A mergesort with an auxiliary temporary array

2006 Pearson Addison-Wesley. Al rights reserved 10 A-24

Mergesort
Glelz=e]7]
Gl Golu]]

> Recursive calls to mergesort

<
> Merge steps
J
Figure 10-9
A mergesort of an array of six integers
2006 Addison-Wesley. All rights reserved 10 A-25

Mergesort

e Analysis
— Worst case: O(n log,n)

Average case: O(n log,n)
— Advantage
* It is an extremely efficient algorithm with respect to
time
— Drawback

e It requires a second array as large as the original
array

2006 Pears

sley. All rights reserved 10 A-26

Quicksort

¢ Quicksort
— A divide-and-conquer algorithm
— Strategy

 Partition an array into items that are less than the pivot and those that are
greater than or equal to the pivot

* Sort the left section

* Sort the right section

s 52
s ™
“p ‘ [| zp
first pivotIndex last
Figure 10-12
A partition about a pivot
2006 Addison-Wesley. All rights reserved 10 A-27

Quicksort

 Using an invariant to develop a partition algorithm

— Invariant for the partition algorithm

The items in region S, are all less than the pivot, and those in
S, are all greater than or equal to the pivot

Pivot Sy S Unknown
A A
s N
v
P <p 2p ?
first lastsl firstUnknown last
Figure 10-14
Invariant for the partition algorithm
2006 Pearson Addis sley. Al rights reserved 10 A-28

Quicksort
* Analysis

— Worst case

« quicksort is O(n?) when the array is already sorted and the
smallest item is chosen as the pivot

originalarray: [5 [6 [7 [8] 9] Figure 10-19

Pivot. Unknown A . ritioni

worst-case partitionin
[sIel7Te]5] _ P 9
Pivot] S, | Unknown with quicksort

Lelmlolo] smenmy

Pivot] S, JUnknown

[ole[7 T8l o] sisenoy

Pivot. s, Unknown

I KX BRI 5
5

First partition nn“ Sy is empty

4 comparisons, 0 exchanges

Addison-Wes|

y. Al rights reserved 10 A-29

Quicksort

¢ Analysis
— Average case

* quicksort is O(n * log,n) when S, and S, contain the same — or nearly the
same — number of items arranged at random

Original array: nn

Pvot]__ Unknown Figure 10-20
ﬂn A average-case partitioning with
Pivot| Unknown q'uicksort
(617 <]
Pivot s, [Unknown
[e [7T«]
Pivot s, JUnknown
(e 7 <]
Pivot| s,
TR
O e
First partition: n n Place pivot between S, and S,
2006 Pearson Addis sley. All rights reserved 10 A-30

Quicksort

* Analysis
- quicksort is usually extremely fast in practice

— Even if the worst case occurs, quicksort’s
performance is acceptable for moderately large arrays

2006 Pearson Addison-Wesley. Al rights r

10 A-31

Radix Sort

* Radix sort
— Treats each data element as a character string
— Strategy
* Repeatedly organize the data into groups according
to the it character in each element
* Analysis
— Radix sort is O(n)

2006 Pearson Addison-Wesley. Al rights r

10 A-32

Radix Sort

A Comparison of Sorting
Algorithms

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150

(1560, 2150) (1061) (0222) (0123, 0283) (2154, 0004)
1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004

(0004) (0222,0123) (2150, 2154) (1560, 1061) (0283)
0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283

(0004, 1061) (0123, 2150, 2154) (0222, 0283) (1560)
0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560

(0004, 0123, 0222, 0283) (1061, 1560) (2150, 2154)
0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154

Original integers
Grouped by fourth digit
Combined

Grouped by third digit
Combined

Grouped by second digit
Combined

Grouped by first digit
Combined (sorted)

Worst case Average case
Selection sort n? n?
Bubble sort n? n?
Insertion sort n? n?
Mergesort n*logn n*logn
Quicksort n? n *log n
Radix sort n n
Treesort n? n*logn
Heapsort n*logn n*logn

Figure 10-21
A radix sort of eight integers

2006 Pearson Addison-Wesley. Al rights reserved 10 A-33

Figure 10-22
Approximate growth rates of time required for eight sorting algorithms

2006 Pearson Addison-Wesley. Al rights reserved 10A-34

Summary

* Worst-case and average-case analyses

— Worst-case analysis considers the maximum amount of work an
algorithm requires on a problem of a given size

— Average-case analysis considers the expected amount of work an
algorithm requires on a problem of a given size

* Order-of-magnitude analysis can be used to choose an
implementation for an abstract data type

* Selection sort, bubble sort, and insertion sort are all O(n?)
algorithms

* Quicksort and mergesort are two very efficient sorting
algorithms

2006 Pearson Addison-Wesley. Al rights reserved 10 A-35

