Algorithm Efficiency and Sorting

Measuring the Efficiency of Algorithms

- Analysis of algorithms
- contrasts the efficiency of different methods of solution
- A comparison of algorithms
- Should focus of significant differences in efficiency
- Should not consider reductions in computing costs due to clever coding tricks

Algorithm Growth Rates

- An algorithm's time requirements can be measured as a function of the input size
- Algorithm efficiency is typically a concern for large data sets only

Order-of-Magnitude Analysis and Big O Notation

- Definition of the order of an algorithm

Algorithm A is order $\mathrm{f}(\mathrm{n})$ - denoted $\mathrm{O}(\mathrm{f}(\mathrm{n})$) - if constants k and n_{0} exist such that A requires no more than $\mathrm{k} * \mathrm{f}(\mathrm{n})$ time units to solve a problem of size $n \geq n_{0}$

- Big O notation
- A notation that uses the capital letter O to specify an algorithm's order
- Example: O(f(n))

Order-of-Magnitude Analysis and Big O Notation

Figure 10-3b
A comparison of growth-rate functions: b) in graphical form
© 2006 Pearson Addison-Wesley. All rights reserved

Order-of-Magnitude Analysis and Big O Notation

- Order of growth of some common functions
$\mathrm{O}(1)<\mathrm{O}\left(\log _{2} \mathrm{n}\right)<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\operatorname{nog}_{2} \mathrm{n}\right)<\mathrm{O}\left(\mathrm{n}^{2}\right)<\mathrm{O}\left(\mathrm{n}^{3}\right)<\mathrm{O}\left(2^{\mathrm{n}}\right)$
- Properties of growth-rate functions
- You can ignore low-order terms
- You can ignore a multiplicative constant in the highorder term
$-\mathrm{O}(\mathrm{f}(\mathrm{n}))+\mathrm{O}(\mathrm{g}(\mathrm{n}))=\mathrm{O}(\mathrm{f}(\mathrm{n})+\mathrm{g}(\mathrm{n}))$

Order-of-Magnitude Analysis and Big O Notation

- Worst-case analyses
- An algorithm can require different times to solve different problems of the same size
- Worst-case analysis
- A determination of the maximum amount of time that an algorithm requires to solve problems of size n

The Efficiency of Searching Algorithms

The Efficiency of Searching Algorithms

- Binary search

- Strategy
- To search a sorted array for a particular item
- Repeatedly divide the array in half
- Determine which half the item must be in, if it is indeed present, and discard the other half
- Efficiency
- Worst case: $\mathrm{O}\left(\log _{2} n\right)$

Sorting Algorithms and Their Efficiency

- Sorting
- A process that organizes a collection of data into either ascending or descending order
- Categories of sorting algorithms
- An internal sort
- Requires that the collection of data fit entirely in the computer's main memory
- An external sort
- The collection of data will not fit in the computer's main memory all at once but must reside in secondary storage
© 2006 Pearson Addison-Wesley. All rights reserved

Sorting Algorithms and Their Efficiency

- Data items to be sorted can be
- Integers
- Character strings
- Objects
- Sort key
- The part of a record that determines the sorted order of the entire record within a collection of records
© 2006 Pearson Addison-Wesley. All rights reserved

Selection Sort

- Selection sort
- Strategy
- Select the largest item and put it in its correct place
- Select the next largest item and put it in its correct place, etc.

Shaded elements are selected;
boldface elements are in order.
Initial array:
After $1^{\text {st }}$ swap:

29	10	14	37	13

After $2^{\text {nd }}$ swap: \quad| 13 | 10 | 14 | $\mathbf{2 9}$ | $\mathbf{3 7}$ |
| :--- | :--- | :--- | :--- | :--- |

After 3 ${ }^{\text {rd }}$ swap: \quad\begin{tabular}{|l|l|l|l|l|}
\hline 13 \& 10 \& $\mathbf{1 4}$ \& $\mathbf{2 9}$ \& $\mathbf{3 7}$

\hline

\quad

\hline
\end{tabular}

After $4^{\text {th }}$ swap: \quad| 10 | 13 | 14 | 29 | 37 |
| :--- | :--- | :--- | :--- | :--- |

Figure 10-4
A selection sort of an array of five integers

Selection Sort

- Analysis
- Selection sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Advantage of selection sort
- It does not depend on the initial arrangement of the data
- Disadvantage of selection sort
- It is only appropriate for small n

Bubble Sort

- Bubble sort
- Strategy
- Compare adjacent elements and exchange them if they are out of order
- Comparing the first two elements, the second and third elements, and so on, will move the largest (or smallest) elements to the end of the array
- Repeating this process will eventually sort the array into ascending (or descending) order

Bubble Sort

(a) Pass 1

Initial array:

29	10	14	37	13
10	29	14	37	13
10	14	29	37	13
10	14	29	37	13
10	14	29	13	37

(b) Pass 2

10	14	29	13	37
10	14	29	13	37
10	14	29	13	37
10	14	13	29	37

Figure 10-5
The first two passes of a bubble sort of an array of five integers: a) pass 1 ; b) pass 2

Insertion Sort

- Insertion sort
- Strategy
- Partition the array into two regions: sorted and unsorted
- Take each item from the unsorted region and insert it into its correct order in the sorted region

Figure 10-6
An insertion sort partitions the array into two regions

Insertion Sort

Initial array: \quad| 29 | 10 | 14 | 37 | 13 |
| :--- | :--- | :--- | :--- | :--- |

29	29	14	37	13

10	29	14	37	13

10	29	29	37	13

10	14	29	37	13

10	$\mathbf{1 4}$	29	37	13

10	14	14	29	37

Sorted array:

10	13	14	29	37

Copy 10
Shift 29
Insert 10; copy 14
Shift 29
Insert 14; copy 37, insert 37 on top of itself
Copy 13
Shift 37, 29, 14
Insert 13

Figure 10-7
An insertion sort of an array of five integers.

Insertion Sort

- Analysis
- Worst case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- For small arrays
- Insertion sort is appropriate due to its simplicity
- For large arrays
- Insertion sort is prohibitively inefficient

Mergesort

- Important divide-and-conquer sorting algorithms

- Mergesort

- Quicksort
- Mergesort
- A recursive sorting algorithm
- Gives the same performance, regardless of the initial order of the array items
- Strategy
- Divide an array into halves
- Sort each half
- Merge the sorted halves into one sorted array

Mergesort

Figure 10-8
A mergesort with an auxiliary temporary array
© 2006 Pearson Addison-Wesley. Al rights reserved - 10 A-24

Mergesort

Figure 10-9
A mergesort of an array of six integers
© 2006 Pearson Addison-Wesley. Al rights reserved

Mergesort

- Analysis
- Worst case: $O\left(n \log _{2} n\right)$
- Average case: O(n $\left.\log _{2} n\right)$
- Advantage
- It is an extremely efficient algorithm with respect to time
- Drawback
- It requires a second array as large as the original array

Quicksort

- Quicksort
- A divide-and-conquer algorithm
- Strategy
- Partition an array into items that are less than the pivot and those that are greater than or equal to the pivot
- Sort the left section
- Sort the right section

Figure 10-12
A partition about a pivot
© 2006 Pearson Addison-Wesley. All rights reserved

Quicksort

- Using an invariant to develop a partition algorithm - Invariant for the partition algorithm

The items in region S_{1} are all less than the pivot, and those in S_{2} are all greater than or equal to the pivot

Figure 10-14
Invariant for the partition algorithm
Q 2006 Pearson Addison-Wesley. All rights reserved 10 A-28

Quicksort

- Analysis
- Worst case
- quicksort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ when the array is already sorted and the smallest item is chosen as the pivot

Original array

| 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | | Pivot | \mathbf{S}_{2} | | | |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 6 | 7 | 8 | Unknown |
| 5 | | | | |

 \begin{tabular}{|c|c|c|c|c|}
\hline 5 \& 6 \& 7 \& 8 \& 9

\hline

\hline Pivot \& \multicolumn{5}{|c|}{S_{2}} \& \& \multicolumn{1}{|c|}{}

\hline 5 \& 6 \& 7 \& 8 \& 9

\hline
\end{tabular}

```
                    S
S
    S, is empty
\(S_{1}\) is empty
\(S_{1}\) is empty
\(S_{1}\) is empty
```

 \(S_{1}\) is empty
 4 comparisons, 0 exchanges
 S_{1} is empty

Figure 10-19
A worst-case partitioning with quicksort

Comparisons, 0 exchanges $10 \mathrm{~A}-29$

Quicksort

- Analysis
- Average case
- quicksort is $\mathrm{O}\left(\mathrm{n} * \log _{2} \mathrm{n}\right)$ when S_{1} and S_{2} contain the same - or nearly the same - number of items arranged at random
$535^{5 / 1 / 4}$ $\frac{\text { pios }}{\text { fata }}$ mas and dsy

[^0]Figure 10-20
A average-case partitioning with quicksort

Quicksort

- Analysis

- quicksort is usually extremely fast in practice
- Even if the worst case occurs, quicksort's performance is acceptable for moderately large arrays

Radix Sort

- Radix sort
- Treats each data element as a character string
- Strategy
- Repeatedly organize the data into groups according to the $\mathrm{i}^{\text {th }}$ character in each element
- Analysis
- Radix sort is $\mathrm{O}(\mathrm{n})$

Radix Sort

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150 $(1560,2150)(1061) \quad(0222) \quad(0123,0283) \quad(2154,0004)$ 1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004 (0004) $\quad(0222,0123)(2150,2154)(1560,1061)(0283)$ 0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283 $(0004,1061) \quad(0123,2150,2154) \quad(0222,0283) \quad(1560)$ 0004, 1061, 0123, 2150, 2154, 0222, 0783, 1560 (0004, 0123, 0222, 0283) ($\mathbf{1 0 6 1}, 1560)(2150,2154)$ 0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154

Original integers
Grouped by fourth digit Combined

Grouped by third digit
Combined
Grouped by second digit
Combined
Grouped by first digit
Combined (sorted)

Figure 10-21

A radix sort of eight integers

Summary

- Worst-case and average-case analyses
- Worst-case analysis considers the maximum amount of work an algorithm requires on a problem of a given size
- Average-case analysis considers the expected amount of work an algorithm requires on a problem of a given size
- Order-of-magnitude analysis can be used to choose an implementation for an abstract data type
- Selection sort, bubble sort, and insertion sort are all $O\left(n^{2}\right)$ algorithms
- Quicksort and mergesort are two very efficient sorting algorithms

A Comparison of Sorting Algorithms

	Worst case	Average case
Selection sort	n^{2}	n^{2}
Bubble sort	n^{2}	n^{2}
Insertion sort	n^{2}	n^{2}
Mergesort	$n * \log n$	$n * \log n$
Quicksort	n^{2}	$n * \log n$
Radix sort	n	n
Treesort	n^{2}	$n * \log n$
Heapsort	$n * \log n$	$n * \log n$
Figure 10-22		
Approximate growth rates of time required for eight sorting algorithms		
-2006 Pearson Addison-Westey. All right reserved		10 A.34

[^0]: © 2006 Pearson Addison-Wesley. All rights reserved

