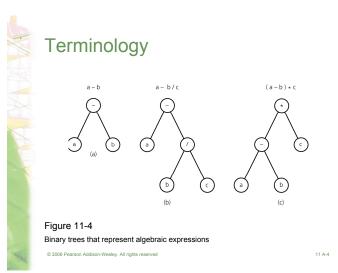


- A general tree T is a set of one or more nodes such that T is partitioned into disjoint subsets:

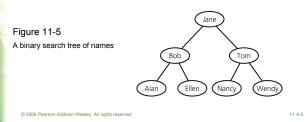
- · Sets that are general trees, called subtrees of r
- Trees have hierarchical structure


Terminology

- Definition of a binary tree
 - A binary tree is a set T of nodes such that either
 - T is empty, or

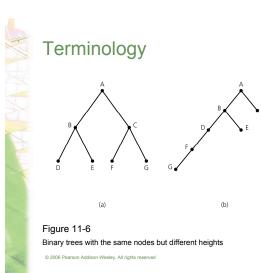
© 2006 Pearson Addison-Wesley. All rights reserved

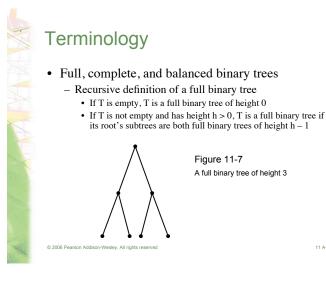
- T is partitioned into three disjoint subsets:
- A single node r, the root
 - Two possibly empty sets that are binary trees, called left and right subtrees of r


11 A-3

Terminology · A binary search tree

- A binary tree that has the following properties for each node n • n's value is greater than all values in its left subtree T_L
 - n's value is less than all values in its right subtree T_R


 - + Both T_L and T_R are binary search trees



Terminology

- · The height of trees
 - Level of a node n in a tree T
 - If n is the root of T, it is at level 1
 - If n is not the root of T, its level is 1 greater than the level of its parent
 - Height of a tree T defined in terms of the levels of its nodes
 - If T is empty, its height is 0
 - If T is not empty, its height is equal to the maximum level of its nodes

© 2006 Pearson Addison-Wesley. All rights reserved

Terminology

Complete binary trees

- A binary tree T of height h is complete if
 - All nodes at level h 2 and above have two children each, and
 - When a node at level h 1 has children, all nodes to its left at the same level have two children each, and
 - When a node at level h 1 has one child, it is a left child

A complete binary tree

11 A-9

11 A-7

Terminology

· Balanced binary trees

- A binary tree is balanced if the height of any node's right subtree differs from the height of the node's left subtree by no more than 1

- Full binary trees are complete
- · Complete binary trees are balanced

Terminology

© 2006 Pearson Addison-Wesley, All rights reserve

- Summary of tree terminology (Continued)
 - Leaf
 - A node with no children
 - Siblings
 - · Nodes with a common parent
 - Ancestor of node n
 - A node on the path from the root to n
 - Descendant of node n
 - A node on a path from n to a leaf
 - Subtree of node n
 - A tree that consists of a child (if any) of n and the child's descendants

© 2006 Pearson Addison-Wesley. All rights re-

- Summary of tree terminology
 - General tree
 - · A set of one or more nodes, partitioned into a root node and subsets that are general subtrees of the root
 - Parent of node n
 - The node directly above node n in the tree
 - Child of node n
 - A node directly below node n in the tree
 - Root
 - · The only node in the tree with no parent

11 A-8

11 A-10

Terminology

• Summary of tree terminology (Continued)

- Height
- The number of nodes on the longest path from the root to a leaf - Binary tree
 - A set of nodes that is either empty or partitioned into a root
 - node and one or two subsets that are binary subtrees of the root
 - Each node has at most two children, the left child and the right child
- Left (right) child of node n
 - A node directly below and to the left (right) of node n in a binary tree

© 2006 Pearson Addison-Wesley. All rights reserved

11 A-13

Summary of tree terminology (Continued) Left (right) subtree of node n In a binary tree, the left (right) child (if any) of node n plus its descendants Binary search tree A binary tree where the value in any node n is greater than the value in every node in n's left subtree, but less than the value of every node in n's right subtree

- Empty binary tree

© 2006 Pearson Addison-Wesley. All rights reserved

· A binary tree with no nodes

11 A-14

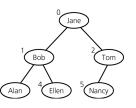
11 A-16

Terminology

Summary of tree terminology (Continued)

- Full binary tree
 - · A binary tree of height h with no missing nodes
 - · All leaves are at level h and all other nodes each have two
 - children

© 2006 Pearson Addison-Wesley. All rights reserved


- Complete binary tree
 - A binary tree of height h that is full to level h 1 and has level h filled in from left to right
- Balanced binary tree
 - A binary tree in which the left and right subtrees of any node have heights that differ by at most 1

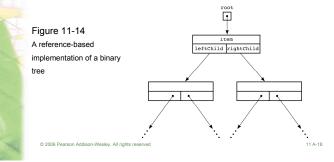

11 A-15

Possible Representations of a Binary Tree

- An array-based representation of a complete tree
 - If the binary tree is complete and remains complete
 - A memory-efficient array-based implementation can be used

Possible Representations of a Binary Tree

Figure 11-12 Level-by-level numbering of a complete binary tree © 2006 Pearson Addison-Wesley. All rights reserved


Figure 11-13 An array-based implementation of the complete binary tree in Figure 10-12

Possible Representations of a Binary Tree

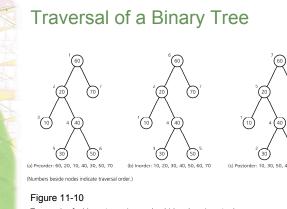
A reference-based representation

© 2006 Pearson Addison-Wesley, All rights reserve

- Java references can be used to link the nodes in the tree

A Comparison of Sorting Algorithms

	Worst case	Average case
Selection sort Bubble sort	n ² n ²	n ² n ²
Insertion sort	n ²	n ²
Mergesort	n * log n	n * log n
Quicksort	n ²	n * log n
Radix sort	n	n
Treesort	n ²	n * log n
Heapsort	n * log n	n * log n
Figure 10-22		
Approximate growth rates of time required for eight sorting algorithms		
© 2006 Pearson Addison-Wesley, All rights reserved		11 A-19


Traversals of a Binary Tree

- A traversal algorithm for a binary tree visits each node in the tree
- Recursive traversal algorithms
 - Preorder traversal
 - Inorder traversal
 - Postorder traversal
- Traversal is O(n)

© 2006 Pearson Addison-Wesley. All rights re-

11 A-20

11 A-22

Traversals of a binary tree: a) preorder; b) inorder; c) postorder © 2006 Pearson Addison-Wesley, All rights re-

Heaps

- A heap is a complete binary tree
 - That is empty

© 2006 Pearson Addison-Wesley, All rights reser

or

- Whose root contains a search key greater than or equal to the search key in each of its children, and
- Whose root has heaps as its subtrees

Heaps

- Maxheap
 - A heap in which the root contains the item with the largest search key
- Minheap
 - A heap in which the root contains the item with the smallest search key

Heaps: An Array-based Implementation of a Heap

Data fields

- items: an array of heap items

ey. All rights reserved

- size: an integer equal to the number of items in the heap

10 9 Figure 12-11 6 A heap with its array 3 representation 2 5 © 2006 Pearson Addison 11 A-24

© 2006 Pearson Addison-Wesley. All rights reserved

11 A-23

(50)

11 A-21