
© 2006 Pearson Addison-Wesley. All rights reserved 13 A-1

Chapter 13

Hash Tables

© 2006 Pearson Addison-Wesley. All rights reserved 13 A-2

Balanced Search Trees

• The efficiency of the binary search tree
implementation of the ADT table is related to the
tree’s height

– Height of a binary search tree of n items

• Maximum: n

• Minimum: !log2(n + 1)"

• Height of a binary search tree is sensitive to the
order of insertions and deletions

• Variations of the binary search tree

– Can retain their balance despite insertions and deletions

© 2006 Pearson Addison-Wesley. All rights reserved 13 A-3

Hashing

• Hashing

– Enables access to table items in time that is relatively constant and

independent of the items

• Hash function

– Maps the search key of a table item into a location that will contain

the item

• Hash table

– An array that contains the table items, as assigned by a hash

function

© 2006 Pearson Addison-Wesley. All rights reserved 13 A-4

Hashing

• A perfect hash function

– Maps each search key into a unique location of the hash table

– Possible if all the search keys are known

• Collisions

– Occur when the hash function maps more than one item into the same
array location

• Collision-resolution schemes

– Assign locations in the hash table to items with different search keys when
the items are involved in a collision

• Requirements for a hash function

– Be easy and fast to compute

– Place items evenly throughout the hash table

© 2006 Pearson Addison-Wesley. All rights reserved 13 A-5

Hash Functions

• It is sufficient for hash functions to operate on integers

• Simple hash functions that operate on positive integers

– Selecting digits

– Folding

– Modulo arithmetic

• Converting a character string to an integer

– If the search key is a character string, it can be converted into an
integer before the hash function is applied

© 2006 Pearson Addison-Wesley. All rights reserved 13 A-6

Resolving Collisions

• Two approaches to collision resolution

– Approach 1: Open addressing

• A category of collision resolution schemes that probe for an empty, or

open, location in the hash table

– The sequence of locations that are examined is the probe sequence

• Linear probing

– Searches the hash table sequentially, starting from the original location

specified by the hash function

– Possible problem

» Primary clustering



© 2006 Pearson Addison-Wesley. All rights reserved 13 A-7

Resolving Collisions

• Approach 1: Open addressing (Continued)

– Quadratic probing

• Searches the hash table beginning with the original location that the hash
function specifies and continues at increments of 12, 22, 32, and so on

• Possible problem

– Secondary clustering

– Double hashing

• Uses two hash functions

• Searches the hash table starting from the location that one hash function
determines and considers every nth location, where n is determined from a
second hash function

• Increasing the size of the hash table

– The hash function must be applied to every item in the old hash table
before the item is placed into the new hash table

© 2006 Pearson Addison-Wesley. All rights reserved 13 A-8

Resolving Collisions

• Approach 2: Restructuring the hash table

– Changes the structure of the hash table so that it can
accommodate more than one item in the same location

– Buckets

• Each location in the hash table is itself an array
called a bucket

– Separate chaining

• Each hash table location is a linked list

© 2006 Pearson Addison-Wesley. All rights reserved 13 A-9

The Efficiency of Hashing

• An analysis of the average-case efficiency of
hashing involves the load factor
– Load factor #

• Ratio of the current number of items in the table to the
maximum size of the array table

• Measures how full a hash table is

• Should not exceed 2/3

– Hashing efficiency for a particular search also depends
on whether the search is successful

• Unsuccessful searches generally require more time than
successful searches

© 2006 Pearson Addison-Wesley. All rights reserved 13 A-10

The Efficiency of Hashing

Figure 13-50Figure 13-50

The relative efficiency of four collision-resolution methods

© 2006 Pearson Addison-Wesley. All rights reserved 13 A-11

What Constitutes a Good Hash

Function?

• A good hash function should

– Be easy and fast to compute

– Scatter the data evenly throughout the hash table

• Issues to consider with regard to how evenly a hash function scatters
the search keys

– How well does the hash function scatter random data?

– How well does the hash function scatter nonrandom data?

• General requirements of a hash function

– The calculation of the hash function should involve the entire search key

– If a hash function uses modulo arithmetic, the base should be prime

© 2006 Pearson Addison-Wesley. All rights reserved 13 A-12

Summary

• Hashing as a table implementation calculates

where the data item should be rather than search

for it


