Chapter 1

Review of Java Fundamentals

Lecture 2
Jenny Walter
Fall 2008

Classes

e Simply stated, a class defines a data type

e Defines data fields and methods available for
instances of the class

® An object in Java is an instance of a class

e Class definition line includes
- Optional access modifier (public or private)
- Keyword class
- Optional extends clause
- Optional implements clause

- Class body: The part inside the curly braces that contains
all data fields and method definitions

Class Hierarchy

Every Java class is a subclass of either

- Another Java class (uses keyword
extends)

- The Object class: Class at the root of
Java class hierarchy; every class
extends Object implicitly

new operator
Creates an object or instance of a class

Language Basics

e Java application

- Collection of classes

® One class contains the main method = Point of entry
for program execution

e Java programs can also be written as
applets, in which case they do not have a
main method

Class Structure

package helloprogram; package name (opt)
/*
* File: HelloProgram.java hegder comment (opt)

* This program displays "hello, world" on the screen.
2/

import acm.graphics.*;

import acm.program.*; import statements (opt)

public class HelloProgram extends GraphicsProgram {

class definition line

public HelloProgram() {
this.start() ;
this.add(new GLabel ("hello, world",100,75)) ;

} U constructor

Packages (aka libraries)

Mechanism for grouping related classes

package statement
Type this statement outside class curly braces to
indicate a class is part of a package

Java assumes all classes in a particular
package are contained in the same directory

Java API consists of many predefined
packages

Importing Packages

e import statement

- Allows use of classes contained in packages
without the inconvenient “fully qualified name”

- Included outside class curly braces, usually at
top of file

® Package java.lang is implicitly imported
to all Java code

e Other commonly imported packages include
- java.util, java.io, java.awt, javax.swing
- acm.graphics, acm.program

Local Variables

e Declared within method curly braces.

e Not visible (or usable) outside method
braces.

® |Local variable declarations contain no
access or use modifiers.

e Never need to use a dot operator as a
prefix to a local variable.

Side Effects

e Any value returned from a method must be
explicitly specified in a return statement

e Side effects include actions such as:
- Input and Output (1/0)
- Changing values of instance variables
- Calling other methods

Data Fields

e Class members that are either variables or
constants

e Declared within class curly braces, but not
within the curly braces of any method.

e Data field declarations can contain
- Access modifiers (public, private, ...)
- Use modifiers (static)

Methods

e Implement tasks
e Declared within class curly braces
e Each method should perform one well-defined task
and no more.
e Method modifiers
- Access modifiers and use modifiers
e Void method
- Returns nothing but has a side effect
e Valued method
- Returns a value
- Body must contain return expression;

- Return type must be declared in method definition
(method header line)

Methods

e Syntax of a method declaration:

access-modifier use-modifiers return-type
method-name (formal-parameter-list)

{
method-body
}

e Multiple methods of the same name can be defined
- method overloading

- methods with same names must have different number or
type of parameters

e Primitive type arguments are passed by value
- For objects and arrays, a reference value is copied instead

Methods

e Syntax of a method call:
<objectName or ClassName>.method-name (argument-list)

e Method calls are analogous to messages being sent
between objects or classes

e Method calls should always be preceded by the
object or class receiving the message followed by
the "dot" operator

e I encourage you to use the keyword "this" to
precede the dot operator when calling an inherited
method or an instance method

How to Access public Members
of an Object

e Data fields and methods not declared static

- Use the object name, followed by a period,
followed by member name

e Data fields and methods declared static

- Use the class name, followed by a period,
followed by member name

Static Class Members

e Technically, data fields and methods
declared with use modifier static are
"class members"

e Static members are invoked independently
of any instance of the class, using the class

name followed by the dot operator, followed

by the member name

Methods

e Constructor
- Special kind of method

- Has the same name as the class, no return type,
no modifiers

- Executed only when an object is created

® A class can contain multiple constructors
(overloaded constructors)

public vs. private

e Public class members of Class X are
accessible by any class Y that has privilege
to access class X

e Private class members are accessible only
within the class curly braces

Comments

e Comment line
- Begins with two slashes (//)
- Continues until the end of the line

¢ Multiple-line comment
- Begins with /* and ends with */
- Useful for debugging; "commenting out" code
- You can't nest multiple-line comments

* javadoc comments
- Begin with /** and end with */

Identifiers and Keywords Naming Conventions

e Identifier e keywords, variable names, and method names start
- Sequence of letters, digits, underscores, and with a lower case letter and every word after the
dollar signs (no other symbols allowed) first is COP"‘C‘I_'Zed- ' _
- Must begin with either a letter or underscore e Class names differ only in that they start with a

capital letter

Constants are written in all capital letters with

underscores separating words.

If you adhere to these naming conventions, your

e Keywords code will be much easier for other experienced
programmers to understand

- Used to name members of the program

- Java distinguishes between uppercase and
lowercase letters

- Java reserved identifiers

Java Keywords (Reserved Words)

o
Variable
abstract else interface super e Name for a memory location
boolean extends long switch . T
break false native synchronized e Contains a value of primitive type or a reference
byte final new this . . .
case finally null throw e Its name is a Java identifier
catch float package throws . . .
char for private transient e Declared by preceding variable name with data
class goto protected true
const if public try fype
continue implements return void
default import short volatile
do instanceof static while double radius; // radius of a sphere
double int strictfp String name; // reference to a String object
o o
Literal Constants Literal Constants
e Indicate particular values (e.g., numbers, characters, e Character constants

strings of characters) within a program
e Used to initialize the value of a variable and
discouraged from use most other places in a program - Default data type is char
e Decimal integer constants
- Do not use commas, decimal points, or leading zeros
- Default data type is either int or long
® Floating constants
- Written using decimal points
- Default data type is double

- Enclosed in single quotes (I.e., ‘a’)

- Literal character strings

e Sequence of characters enclosed in double
quotes (I.e., “This is a string of characters”)

Named Constant Primitive Data Types

Name for a memory location that cannot be e Organized into four categories
changed after declared — boolean
Contains a value of primitive or reference type = Gl

— int

Its name is a Java identifier and its value must be

R il — double (float)
set on the same line it is declared

e char and int types are called integral types

Declared by preceding variable name with data e Integral and floating-point types are called
type and the keyword final arithmetic types
public final double PI = 3.14;
public final String WEEK DAY 1 = "Monday";
Primitive Data Types Reference types

e Val f primitive t is not sidered .
ko ININE P 8 RO BRI EE! ¢ Data type used to locate an object

object
- java.lang provides wrapper classes for each e Java does not allow programmer to
off 1 Pl i Wipes perform operations on the reference
e Auto-boxing value

- Automatically converts from a primitive type to . . .
the equivale:,r reEer Al P 4 e Location of object in memory (on the

e Auto-unboxing heap) can be assigned to a reference

- Reverse process variable
Assignments and Expressions Assignments and Expressions
® Expressions
- Combination of variables, constants, e Other assignment operators
operators, and parentheses —
- Must be evaluated before value is known *—
® Assignment statement (= is assignment /=
operator) o

- Example: radius = r; +

Statements

e Combination of expressions
® Each Java statement ends with a semicolon

e Every executable statement that is not a
declaration should be contained within the
curly braces of a method

Relational Expressions

e Combine variables and constants with

relational (I.e. comparison) and

equality operators and parentheses
® Relational operators: <, <=, >=. >
® Equality operators: ==, !=

-All relational expressions evaluate
to true or false

Assignments and Expressions

e Implicit type conversions

- Occur during assignment and during expression
evaluation

- Right-hand side of assignment operator is
converted to data type of item on left-hand side
if possible, otherwise an error occurs

- Floating-point values are truncated not rounded

- Integral promotion

® Values of type byte, char, or short are converted
to int

- Conversion hierarchy
* int = long — float — double

Arithmetic Expressions

Combine variables and constants with
arithmetic operators and parentheses

Arithmetic operators: *, /, %, +, -

Logical Expressions

Combine variables and constants of arithmetic
types in relational expressions and joins these
expressions with logical operators

- Logical operators: &&, ||

- Evaluate to true or false

- Short-circuit evaluation

® Evaluates logical expressions from left to right
e Stops as soon as the value of expression is apparent

Assignments and Expressions

e Explicit type conversions
- Possible by means of a cast
- Cast operator
e Unary operator
e Formed by enclosing the desired data type within
parentheses
® Multiple assignments
- Embed assignment expressions within assignment
expressions
® Example: a = 5 + (b = 4)
® Evaluates to 9 while b is assigned 4

Using the acm.jar

e Useful because

- it creates new windows that display output that is more visually
appealing than text showing up at the bottom of the screen in an IDE

- it makes graphics programming code much more compact
® For a class that writes output on a console window:
- import acm.program.*
- extend ConsoleProgram
- in the constructor, include a call to this.start() (opens the window)
- System.out.printin's become printin's

- reading int's goes from reading a String and converting it to anint to
readInt("Prompt for user:")

e For a class that sets up a graphics canvas:
- import acm.program.* and acm.graphics.* and java.awt.* and sometimes
Jjavax.swing.*
- extend GraphicsProgram
- in the constructor, include a call to this.start() (opens the window)

Class Circle

package testcircle;
import acm.program.*;
import acm.graphics.*;
import java.awt.*;

public class Circle extends GraphicsProgram {

public Circle() {
this.start();
GOval myCircle = new GOval (200,200,200,200) ;
myCircle.setVisible (true) ;
myCircle.setFilled(true) ;
myCircle.setColor (Color.green) ;
this.add (myCircle) ;

Class TestSimpleSphere

package simplesphere;

public class TestSimpleSphere {
public static void main (String[] args) {
SimpleSphere ball;
ball = new SimpleSphere(19.1);
System.out.println("The volume of a sphere of "
+ "radius " + ball.getRadius() +" inches is "
+ (float)ball.getVolume ()
+ " cubic inches\n");
} // end main
} // end TestSimpleSphere

Class TestCircle

package testcircle;

/*

* File: TestCircle.java

* This program displays a circle on the canvas.
*/

public class TestCircle {
public static void main(String[] args) {

new Circle();

}

Class SimpleSphere

package simplesphere;

public class SimpleSphere {

}

private double radius;
public static final double DEFAULT_RADIUS = 1.0;
public SimpleSphere() {
this.radius = this.DEFAULT_RADIUS;
} // end O-parameter constructor
public SimpleSphere (double r) {
this.radius = r;
} // end l-parameter constructor
public double getRadius() {
return this.radius;
} // end getRadius
public double getVolume() {
double radiusCubed = radius * radius * radius;
return 4 * Math.PI * radiusCubed / 3;
} // end getVolume
// end class SimpleSphere

Class Circle

package testcircle;
import acm.program.*;
import acm.graphics.*;
import java.awt.*;

public class Circle extends GraphicsProgram {

public Circle() {
this.start();
GOval myCircle = new GOval (200,200,200,200) ;
myCircle.setVisible (true) ;
myCircle.setFilled(true) ;
myCircle.setColor (Color.green) ;
this.add (myCircle) ;

