
Chapter 1

Review of Java Fundamentals

Lecture 2

Jenny Walter
Fall 2008

Language Basics

• Java application
– Collection of classes

• One class contains the main method = Point of entry
for program execution

• Java programs can also be written as
applets, in which case they do not have a
main method

Classes
• Simply stated, a class defines a data type

• Defines data fields and methods available for
instances of the class

• An object in Java is an instance of a class

• Class definition line includes
– Optional access modifier (public or private)
– Keyword class
– Optional extends clause
– Optional implements clause
– Class body: The part inside the curly braces that contains

all data fields and method definitions

Class Structure

package helloprogram;
/*
 * File: HelloProgram.java
 * -----------------------
 * This program displays "hello, world" on the screen.
 */

import acm.graphics.*;
import acm.program.*;

public class HelloProgram extends GraphicsProgram {

 public HelloProgram() {
this.start();

 this.add(new GLabel("hello, world",100,75));
 }
}

import statements (opt)

constructor

header comment (opt)

class definition line

package name (opt)

Class Hierarchy

Every Java class is a subclass of either
– Another Java class (uses keyword

extends)
– The Object class: Class at the root of

Java class hierarchy; every class
extends Object implicitly

new operator
Creates an object or instance of a class

Packages (aka libraries)

Mechanism for grouping related classes

package statement
Type this statement outside class curly braces to
indicate a class is part of a package

Java assumes all classes in a particular
package are contained in the same directory

Java API consists of many predefined
packages

Importing Packages

• import statement
– Allows use of classes contained in packages

without the inconvenient “fully qualified name”
– Included outside class curly braces, usually at

top of file

• Package java.lang is implicitly imported
to all Java code

• Other commonly imported packages include
– java.util, java.io, java.awt, javax.swing
– acm.graphics, acm.program

Data Fields

• Class members that are either variables or
constants

• Declared within class curly braces, but not
within the curly braces of any method.

• Data field declarations can contain
– Access modifiers (public, private, …)
– Use modifiers (static)

Local Variables

• Declared within method curly braces.

• Not visible (or usable) outside method
braces.

• Local variable declarations contain no
access or use modifiers.

• Never need to use a dot operator as a
prefix to a local variable.

Methods
• Implement tasks
• Declared within class curly braces
• Each method should perform one well-defined task

and no more.
• Method modifiers

– Access modifiers and use modifiers

• Void method
– Returns nothing but has a side effect

• Valued method
– Returns a value
– Body must contain return expression;
– Return type must be declared in method definition

(method header line)

Side Effects
• Any value returned from a method must be

explicitly specified in a return statement

• Side effects include actions such as:
– Input and Output (I/O)
– Changing values of instance variables
– Calling other methods

Methods
• Syntax of a method declaration:

access-modifier use-modifiers return-type

method-name (formal-parameter-list)

{

method-body

}

• Multiple methods of the same name can be defined
– method overloading
– methods with same names must have different number or

type of parameters

• Primitive type arguments are passed by value
– For objects and arrays, a reference value is copied instead

Methods
• Syntax of a method call:

 <objectName or ClassName>.method-name(argument-list)

• Method calls are analogous to messages being sent
between objects or classes

• Method calls should always be preceded by the
object or class receiving the message followed by
the "dot" operator

• I encourage you to use the keyword "this" to
precede the dot operator when calling an inherited
method or an instance method

Methods

• Constructor
– Special kind of method
– Has the same name as the class, no return type,

no modifiers
– Executed only when an object is created

• A class can contain multiple constructors
(overloaded constructors)

How to Access public Members
of an Object

• Data fields and methods not declared static
– Use the object name, followed by a period,

followed by member name

• Data fields and methods declared static
– Use the class name, followed by a period,

followed by member name

public vs. private

• Public class members of Class X are
accessible by any class Y that has privilege
to access class X

• Private class members are accessible only
within the class curly braces

Static Class Members

• Technically, data fields and methods
declared with use modifier static are
"class members"

• Static members are invoked independently
of any instance of the class, using the class
name followed by the dot operator, followed
by the member name

Comments

• Comment line
– Begins with two slashes (//)
– Continues until the end of the line

• Multiple-line comment
– Begins with /* and ends with */
– Useful for debugging; "commenting out" code
– You can't nest multiple-line comments

• javadoc comments
– Begin with /** and end with */

Identifiers and Keywords
• Identifier

– Sequence of letters, digits, underscores, and
dollar signs (no other symbols allowed)

– Must begin with either a letter or underscore
– Used to name members of the program
– Java distinguishes between uppercase and

lowercase letters

• Keywords
– Java reserved identifiers

Naming Conventions
• keywords, variable names, and method names start

with a lower case letter and every word after the
first is capitalized.

• Class names differ only in that they start with a
capital letter

• Constants are written in all capital letters with
underscores separating words.

• If you adhere to these naming conventions, your
code will be much easier for other experienced
programmers to understand

Java Keywords (Reserved Words)

abstract
boolean
break
byte
case
catch
char
class
const
continue
default
do
double

else
extends
false
final
finally
float
for
goto
if
implements
import
instanceof
int

interface
long
native
new
null
package
private
protected
public
return
short
static
strictfp

super
switch
synchronized
this
throw
throws
transient
true
try
void
volatile
while

Variable

• Name for a memory location
• Contains a value of primitive type or a reference
• Its name is a Java identifier
• Declared by preceding variable name with data

type

double radius; // radius of a sphere

String name; // reference to a String object

Literal Constants

• Indicate particular values (e.g., numbers, characters,
strings of characters) within a program

• Used to initialize the value of a variable and
discouraged from use most other places in a program

• Decimal integer constants
– Do not use commas, decimal points, or leading zeros
– Default data type is either int or long

• Floating constants
– Written using decimal points
– Default data type is double

Literal Constants

• Character constants
– Enclosed in single quotes (I.e., ‘a’)
– Default data type is char
– Literal character strings

• Sequence of characters enclosed in double
quotes (I.e., “This is a string of characters”)

Named Constant

• Name for a memory location that cannot be
changed after declared

• Contains a value of primitive or reference type
• Its name is a Java identifier and its value must be

set on the same line it is declared
• Declared by preceding variable name with data

type and the keyword final

public final double PI = 3.14;

public final String WEEK_DAY_1 = "Monday";

Primitive Data Types

• Organized into four categories
– boolean

– char

– int

– double (float)

• char and int types are called integral types
• Integral and floating-point types are called

arithmetic types

Primitive Data Types
• Value of primitive type is not considered an

object
– java.lang provides wrapper classes for each

of the primitive types

• Auto-boxing
– Automatically converts from a primitive type to

the equivalent wrapper class

• Auto-unboxing
– Reverse process

Reference types

• Data type used to locate an object
• Java does not allow programmer to

perform operations on the reference
value

• Location of object in memory (on the
heap) can be assigned to a reference
variable

Assignments and Expressions
• Expressions

– Combination of variables, constants,
operators, and parentheses

– Must be evaluated before value is known

• Assignment statement (= is assignment
operator)

– Example: radius = r;

Assignments and Expressions

• Other assignment operators
-=

*=

/=

%=

++

--

Statements
• Combination of expressions

• Each Java statement ends with a semicolon

• Every executable statement that is not a
declaration should be contained within the
curly braces of a method

Arithmetic Expressions

Combine variables and constants with
arithmetic operators and parentheses

Arithmetic operators: *, /, %, +, -

Relational Expressions

• Combine variables and constants with
relational (I.e. comparison) and
equality operators and parentheses

• Relational operators: <, <=, >=. >
• Equality operators: ==, !=

–All relational expressions evaluate
to true or false

Logical Expressions

Combine variables and constants of arithmetic
types in relational expressions and joins these
expressions with logical operators

– Logical operators: &&, ||
– Evaluate to true or false
– Short-circuit evaluation

• Evaluates logical expressions from left to right
• Stops as soon as the value of expression is apparent

Assignments and Expressions

• Implicit type conversions
– Occur during assignment and during expression

evaluation
– Right-hand side of assignment operator is

converted to data type of item on left-hand side
if possible, otherwise an error occurs

– Floating-point values are truncated not rounded
– Integral promotion

• Values of type byte, char, or short are converted
to int

– Conversion hierarchy
• int ! long ! float ! double

Assignments and Expressions

• Explicit type conversions
– Possible by means of a cast
– Cast operator

• Unary operator
• Formed by enclosing the desired data type within

parentheses

• Multiple assignments
– Embed assignment expressions within assignment

expressions
• Example: a = 5 + (b = 4)
• Evaluates to 9 while b is assigned 4

Using the acm.jar
• Useful because

– it creates new windows that display output that is more visually
appealing than text showing up at the bottom of the screen in an IDE

– it makes graphics programming code much more compact
• For a class that writes output on a console window:

– import acm.program.*
– extend ConsoleProgram
– in the constructor, include a call to this.start() (opens the window)
– System.out.println's become println's
– reading int's goes from reading a String and converting it to an int to

readInt("Prompt for user:")

• For a class that sets up a graphics canvas:
– import acm.program.* and acm.graphics.* and java.awt.* and sometimes

javax.swing.*
– extend GraphicsProgram
– in the constructor, include a call to this.start() (opens the window)

Class TestCircle

package testcircle;

/*
 * File: TestCircle.java
 * -----------------------
 * This program displays a circle on the canvas.
 */

public class TestCircle {

 public static void main(String[] args) {
 new Circle();
 }

}

Class Circle
package testcircle;
import acm.program.*;
import acm.graphics.*;
import java.awt.*;

public class Circle extends GraphicsProgram {

 public Circle() {
 this.start();
 GOval myCircle = new GOval(200,200,200,200);
 myCircle.setVisible(true);
 myCircle.setFilled(true);
 myCircle.setColor(Color.green);
 this.add(myCircle);
 }

}

Class SimpleSphere
package simplesphere;

public class SimpleSphere {
 private double radius;
 public static final double DEFAULT_RADIUS = 1.0;
 public SimpleSphere() {
 this.radius = this.DEFAULT_RADIUS;
 } // end 0-parameter constructor
 public SimpleSphere(double r) {
 this.radius = r;
 } // end 1-parameter constructor
 public double getRadius() {
 return this.radius;
 } // end getRadius
 public double getVolume() {
 double radiusCubed = radius * radius * radius;
 return 4 * Math.PI * radiusCubed / 3;
 } // end getVolume
} // end class SimpleSphere

Class TestSimpleSphere

package simplesphere;

public class TestSimpleSphere {
 public static void main (String[] args) {
 SimpleSphere ball;
 ball = new SimpleSphere(19.1);
 System.out.println("The volume of a sphere of "
 + "radius " + ball.getRadius() +" inches is "
 + (float)ball.getVolume()
 + " cubic inches\n");
 } // end main
} // end TestSimpleSphere

Class Circle
package testcircle;
import acm.program.*;
import acm.graphics.*;
import java.awt.*;

public class Circle extends GraphicsProgram {

 public Circle() {
 this.start();
 GOval myCircle = new GOval(200,200,200,200);
 myCircle.setVisible(true);
 myCircle.setFilled(true);
 myCircle.setColor(Color.green);
 this.add(myCircle);
 }

}

