
Chapter 1

Review of Java Fundamentals

Lecture 3

Jenny Walter
Fall 2008

Using acm.jar files
package lect3;

/*
 * File: TestInput.java
 * -----------------------
 * This program creates a new console window for
 * user input.
 */

public class TestInput {

 public static void main(String[] args) {

 new InputConsole();

 }

}
All this main method does is create
a new InputConsole object--no need
to import acm package here.

package lect3;

import acm.program.*;

public class InputConsole extends ConsoleProgram{

 public InputConsole() {

 this.start();

 this.println("This simple program reads\n"+

 "an integer, a double, and a String\n"+

 "from the user and displays them on\n"+

 "the screen.");

 int first = this.readInt("\nEnter an integer: ");

 double second = this.readDouble

 ("\nEnter a double: ");

 String third = this.readLine("\nEnter anything: ");

 this.println("\n\nInteger entered: "+first+

 " Double entered: "+second+

 " String entered: "+third);

 }

}

InputConsole extends ConsoleProgram,
thereby gaining access to all methods in
ConsoleProgram

Elegant Code & Indentation

• Rules of indentation:
– Open curly braces can either be on the same

line as the definition that requires the braces or
on the following line

– Within each matched pair of curly braces, the
statements should be indented 2-4 spaces and
all statements at a given indentation level
should be vertically aligned

– Closing curly braces should be on the line after
the last statement within the pair of braces

Elegant Code & Documentation

• Rules of documentation:
– Choose identifiers that reflect the purpose of

the entity being named; results in "semi-self-
documenting" code (usually more explanation is
required)

– In the header comment (at the top of every
file), include:
• CMPU125, Fall 2008
• Lab or HW number and date of completion
• ***Your name***
• The file name and a brief synopsis of its purpose

Elegant Code & Documentation

• Rules of documentation (cont.):
– Include header comments before each

new method
• Describe any applicable pre-conditions
• Describe purpose of parameters and any
assumptions you are making about the
arguments to those parameters

• Describe return type and post-conditions
• NetBeans starts some new comments for you

Readable Code

• Make sure the length of each line is at
most 80 characters so the program listing
contains no line-wraps
– Code with line-wraps can be torture to read
– I hate to be tortured
– So keep your lines short

NetBeans has a vertical red line in the
editor to show the line length limit in
column 80.

• Put a couple of blank lines in your code now
and then to separate logical units

The javadoc Documentation System
Java was designed to operate in the web-based environment.

One of the ways Java works together with the web is in the design
of its documentation system, which is called javadoc. The javadoc
application reads Java source files and generates documentation for
each class.

The next few slides show increasingly detailed views of the javadoc
documentation for the RandomGenerator class.

A tutorial on using javadoc can be found at the following link:

http://java.sun.com/j2se/javadoc/writingdoccomments/

Writing javadoc Comments
The javadoc system is designed to create the documentary web
pages automatically from the Java source code. To make this work
with your own programs, you need to add specially formatted
comments to your code.

A javadoc comment begins with the characters /** and extends up
to the closing */ just as a regular comment does. Although the
compiler ignores these comments, the javadoc application reads
through them to find the information it needs to create the
documentation.

Although javadoc comments may consist of simple text, they may
also contain formatting information written in HTML. The javadoc
comments also often contain @param and @result tags to describe
parameters and results, as illustrated on the next slide.

An Example of javadoc Comments

/**

 * Returns the next random integer between 0 and

 * <code>n</code>-1, inclusive.

 *

 * @param n The number of integers in the range

 * @return A random integer between 0 and <code>n</code>-1

 */

 public int nextInt(int n)

public int nextInt(int n)

Returns the next random integer between 0 and n-1, inclusive.

Parameter: n The number of integers in the range
Returns: A random integer between 0 and n-1

The javadoc comment

produces the following entry in the “Method Detail”
section of the web page.

The javadoc Documentation System

In order to produce .html files like the ones in the Java API, you
need to run the javadoc utility, specifying your .java file as input.

Another javadoc tutorial can be found at the link below:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/javadoc.html

DrJava

• Free IDE you can download from the web.
– Advantage over NetBeans is a nicer editor that

does automatic text indentation.
– Disadvantage is that DrJava doesn't do auto

completion for things like imported and inherited
methods.

– NetBeans seems to lack a feature for
automatically indenting code. One suggestion I
have is to do auto-indenting in DrJava

– Inside DrJava, you can select the whole file
(using Ctrl-A or Command-A) and then press tab
to indent all lines to the right level. Be sure to
save the file after indentation is complete.

Editing, Compiling and such
• In lab or for homeworks, you can work in any IDE

you want. Use the emacs editor and compile and
run your program in emacs or at the command line
if you so choose.

• I would prefer if you could submit just the .java
files from the src subdirectory of each project
instead of the entire NetBeans project.

• I'll include directions in the next lab, detailing how
you can find these files and submit them.

Escape Sequences

• Escape sequences are literals that can
be embedded in Strings
\n new line
\t tab
\" double quote
\\ backslash
\' single quote

String continuations

• The Java compiler won't allow a String
to span more than one line

• This comes up frequently when a call
to println doesn't finish a String literal
in a single line

• Solution: End the String using a " and
add a + (concatenation operator) to
continue the String on the next line.

String class

• Class String
• Declaration examples:

– String title;

– String title = “Walls and Mirrors”;

• Assignment example:
– Title = “Walls and Mirrors”;

• String length example:
– title.length();

• Referencing a single character
– title.charAt(0);

• Comparing strings
– title.compareTo(string2);

String class

• Class String
• Other useful methods

– substring(int n)

– substring(int i,int n)

– toUpperCase()

– toLowerCase()

– indexOf(int c)

– startsWith(String prefix)

– endsWith(String suffix)

– replace(char newChar, char oldChar)

String class

• Concatenation example:
String monthName = "December";

int day = 31;

int year = 02;

String date = monthName + " " + day +

 ", 20" + year;

The + operator works like addition when both
operands are numbers and it works like
concatenation when one operand is a String

Selection Statements

• The if statement
if (expression)

statement1

or
if (expression)

statement1

else

statement2

• Nested if
if (expression) {

statement1

}

else if (expression)

{

statement2

}

else {

statement3

} // end if

Selection Statements

• The switch statement
switch (integral expression) {

case 1:

statement1;

break;

case 2, case 3:

statement2;

case 4:

statement3;

break;

default:

statement4;

} //end of switch

Iteration Statements

• The while statement
while (expression) {

statement

}

• statement is executed as long as
expression is true

• statement may not be executed at
all

Iteration Statements

• The loop-and-a-half while statement
while (true) {

statement

 if (expression)

 break;

}

• break statement
– Exits the innermost loop if expression is true

Using Continue

• The while statement
while (expression1) {

statementSet1

 if (expression2)

 continue;

 statementSet2

}

• continue expression
– Stops the current iteration of the loop and begins the

next iteration at the top of the loop
– Skips statementSet2 if expression2 is true

Iteration Statements

• The for statement
for (initialize; test; update)

statement

• statement is executed as long as
test is true

• for statement is equivalent to a
while statement

Iteration Statements

• The for statement as loop-and-a-half
for (;;) {

statement

 if (expression)

 break;

}

• statement is executed until expression
becomes true

Iteration Statements

• The do statement
do {

statement

} while (expression);

• statement is executed until
expression is false

• do statement loops at least once

static vs non-static class members

• Data fields and method definitions can
include the keyword static

• Static members are accessible either
through an object of the class type or
through the class name
– I prefer you access static members through the

class name (e.g., Math.abs(…), Color.RED,
Integer.parseInt(…)) for the sake of readability

• A non-static member cannot be accessed
from a static method of the same class
unless you first create an object of the
class type

Useful Java Classes

• Class StringBuffer
– Creates mutable strings
– Provides same functionality as class String
– More useful methods

• public StringBuffer append(String str)

• public StringBuffer insert(int offset,
String str)

• public StringBuffer delete(int start, int
end)

• public void setCharAt(int index, char ch)

• public StringBuffer replace(int start, int
end, String str)

Useful Java Classes

• Class StringTokenizer
– Allows a program to break a string into pieces

or tokens
– More useful methods

• public StringTokenizer(String str)

• public StringTokenizer(String str, String
delim)

• public StringTokenizer(String str, String
delim, boolean returnTokens)

• public String nextToken()

• public boolean hasMoreTokens()

Object class

• The Object class
– Java supports a single class inheritance

hierarchy
• With class Object as the root

– Useful methods inherited by all user-
defined classes (but need to be overridden
to be useful):
•public boolean equals(Object obj)

•protected void finalize()

•public int hashCode()

•public String toString()

The Java Hierarchy

• Each class can extend at most one
other class.

• Every class implicitly extends the
Object class
– Result is that every class inherits all the

methods defined in the Object class.
– However, to be useful, these methods

must be overridden, meaning that an
implementation must be provided for that
method in each subclass

Overloading vs. Overriding
• Method overloading refers to multiple definitions

of methods with the same name within the same
class. Overloaded methods must have different
types or numbers of parameters.

• Method overriding refers to subclasses defining
methods with the same method definition line (aka
signature) as one of their superclasses. To
override a superclass method, the method
definition line of the subclass must match that of
the superclass exactly.

It is a good idea to override the toString method
because it is called automatically when an object
is included in a print statement.

