
Nested for Statements

• The body of a control statement can contain other statements.
Such statements are said to be nested.

• Many applications require nested for statements. The next
slide, for example, shows a program to display a standard
checkerboard in which the number of rows and number of
columns are given by the constants N_ROWS and N_COLUMNS.

• The for loops in the Checkerboard program look like this:

for (int i = 0; i < N_ROWS; i++) {
 for (int j = 0; j < N_COLUMNS; j++) {
 Display the square at row i and column j.

 }
}

• Because the entire inner loop runs for each cycle of the outer
loop, the program displays N_ROWS x N_COLUMNS squares.

The Checkerboard Program
public void run() {
 double sqSize = (double) getHeight() / N_ROWS;
 for (int i = 0; i < N_ROWS; i++) {
 for (int j = 0; j < N_COLUMNS; j++) {
 double x = j * sqSize;
 double y = i * sqSize;
 GRect sq = new GRect(x, y, sqSize, sqSize);
 sq.setFilled((i + j) % 2 != 0);
 add(sq);
 }
 }
}

sqyxjisqSize

30.0 0 0 0.0 0.030.011 60.02 210.088 210.0

Execute the
inner loop
seven times to
complete the
checkerboard.

Execute these
statements six
more times to
complete the
row.

public void run() {
 double sqSize = (double) getHeight() / N_ROWS;
 for (int i = 0; i < N_ROWS; i++) {
 for (int j = 0; j < N_COLUMNS; j++) {
 double x = j * sqSize;
 double y = i * sqSize;
 GRect sq = new GRect(x, y, sqSize, sqSize);
 sq.setFilled((i + j) % 2 != 0);
 add(sq);
 }
 }
}

sqyxjisqSize

30.0 210.088 210.0

skip simulation

Checkerboard

Exercise: Triangle Number Table

Write a program that duplicates the sample run shown at the
bottom on this slide, which displays the sum of the first N
integers for each value of N from 1 to 10. As the output suggests,
these numbers can be arranged to form a triangle and are
therefore called triangle numbers.

TriangleTable

1 = 1
1 + 2 = 3
1 + 2 + 3 = 6
1 + 2 + 3 + 4 = 10
1 + 2 + 3 + 4 + 5 = 15
1 + 2 + 3 + 4 + 5 + 6 = 21
1 + 2 + 3 + 4 + 5 + 6 + 7 = 28
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55

Design Issues: Triangle Number Table

• The program involves two nested loops. The outer loop runs
through each of the values of N from 1 to the maximum; the
inner loop prints a series of values on each output line.

As you think about the design of the TriangleTable program,
it will help to keep the following thoughts in mind:

• The individual elements of each output line are easier to
display if you call print instead of println. The print
method is similar to println but doesn’t return the cursor
position to the beginning of the next line in the way that
println does. Using print therefore makes it possible to
string several output values together on the same line.

• The nth output line contains n values before the equal sign but
only n – 1 plus signs. Your program therefore cannot print a
plus sign on each cycle of the inner loop but must instead
skip one cycle.

Simple Graphical Animation
The while and for statements make it possible to implement
simple graphical animation. The basic strategy is to create a set
of graphical objects and then execute the following loop:

for (int i = 0; i < N_STEPS; i++) {
 update the graphical objects by a small amount

 pause(PAUSE_TIME);
}

On each cycle of the loop, this pattern updates each animated
object by moving it slightly or changing some other property of
the object, such as its color. Each cycle is called a time step.

After each time step, the animation pattern calls pause, which
delays the program for some number of milliseconds (expressed
here as the constant PAUSE_TIME). Without the call to pause,
the program would finish faster than the human eye can follow.

for (int i = 0; i < N_STEPS; i++) {
 update the graphical objects by a small amount

 pause(PAUSE_TIME);
}

AnimatedSquare

The AnimatedSquare Program
public void run() {
 GRect square = new GRect(0, 0, SQUARE_SIZE, SQUARE_SIZE);
 square.setFilled(true);
 square.setFillColor(Color.RED);
 add(square);
 double dx = (getWidth() - SQUARE_SIZE) / N_STEPS;
 double dy = (getHeight() - SQUARE_SIZE) / N_STEPS;
 for (int i = 0; i < N_STEPS; i++) {
 square.move(dx, dy);
 pause(PAUSE_TIME);
 }
}

squaredydx

3.0 1.7

AnimatedSquare

skip simulation

i

public void run() {
 GRect square = new GRect(0, 0, SQUARE_SIZE, SQUARE_SIZE);
 square.setFilled(true);
 square.setFillColor(Color.RED);
 add(square);
 double dx = (getWidth() - SQUARE_SIZE) / N_STEPS;
 double dy = (getHeight() - SQUARE_SIZE) / N_STEPS;
 for (int i = 0; i < N_STEPS; i++) {
 square.move(dx, dy);
 pause(PAUSE_TIME);
 }
}

squaredydx

3.0 1.7

AnimatedSquare

i

101

Responding to Keyboard Events

• The most common key events are:

keyPressed(e)

keyReleased(e)

keyTyped(e)

Called when the user presses a key

Called when the key comes back up

Called when the user types (presses and releases) a key

In these methods, e is a KeyEvent object, which indicates
which key is involved along with additional data to record
which modifier keys (SHIFT, CTRL, and ALT) were down at
the time of the event.

• The general strategy for responding to keyboard events is
similar to that for mouse events, even though the events are
different. Once again, you need to take the following steps:

1. Call addKeyListeners from the constructor

2. Write new definitions of any listener methods you need.

Identifying the Key
• The process of determining which key generated the event

depends on the type of key event you are using.

• If you are coding the keyTyped method, the usual strategy is
to call getKeyChar on the event, which returns the character
generated by that key. The getKeyChar method takes
account of modifier keys, so that typing the a key with the
SHIFT key down generates the character 'A'.

• When you implement the keyPressed and keyReleased
methods, you need to call getKeyCode instead. This method
returns an integer code for one of the keys. A complete list of
the key codes appears in Figure 10-6 on page 361. Common
examples include the ENTER key (VK_ENTER), the arrow keys
(VK_LEFT, VK_RIGHT, VK_UP, VK_DOWN), and the function
keys (VK_F1 through VK_F12).

Creating a Simple GUI
• In addition to mouse and keyboard events, application

programs may include a graphical user interface or GUI
(pronounced gooey) consisting of buttons and other on-screen
controls. Collectively, these controls are called interactors.

• Java defines many types of interactors, most of which are part
of a collection called the Swing library, described in section
10.6. You create a GUI by constructing the Swing interactors
you need and then arranging them appropriately in the
program window.

• The text outlines two strategies for arranging interactors on
the screen. The simple approach is to create a control strip
along one of the edges of the window, as described on the
next slide. You can, however, create other GUI layouts by
using Java’s layout managers, as described in section 10.7.

Creating a Control Strip
• When you create an instance of any Program subclass, Java

divides the window area into five regions as follows:

• The CENTER region is typically where the action takes place.
A ConsoleProgram adds a console to the CENTER region,
and a GraphicsProgram puts a GCanvas there.

CENTER

NORTH

SOUTH

W

E

S

T

E

A

S

T

• The other regions are visible only if you add an interactor to
them. The examples in the text use the SOUTH region as a
control strip containing a set of interactors, which are laid
out from left to right in the order in which they were added.

Creating a GUI with a Single Button

Please do not press this button again.
Please do not press this button again.

Arthur listened for a short while, but being unable to understand the vast
majority of what Ford was saying he began to let his mind wander, trailing
his fingers along the edge of an incomprehensible computer bank, he reached
out and pressed an invitingly large red button on a nearby panel. The panel
lit up with the words “Please do not press this button again.”

—Douglas Adams, Hitchhiker’s Guide to the Galaxy, 1979

The HitchhikerButton program on the next slide uses this
vignette from Hitchhiker’s Guide to the Galaxy to illustrate the
process of creating a GUI without focusing on the details. The
code creates a single button and adds it to the SOUTH region. It
then waits for the user to click the button, at which point the
program responds by printing a simple message on the console.

HitchhikerButton

Red

The HitchhikerButton Program
import acm.program.*;
import java.awt.event.*;
import javax.swing.*;

/*
 * This program puts up a button on the screen, which triggers a
 * message inspired by Douglas Adams's novel.
 */
public class HitchhikerButton extends ConsoleProgram {

/* Initializes the user-interface buttons */
 public void init() {
 add(new JButton("Red"), SOUTH);
 addActionListeners();
 }

/* Responds to a button action */
 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand().equals("Red")) {
 println("Please do not press this button again.");
 }
 }
}

The JButton Class
• The most common interactor in GUI-based applications is an

on-screen button, which is implemented in Swing by the class
JButton. A JButton object looks something like

• When you click on a button, Java generates an action event,
which in turn invokes a call to actionPerformed in any
listeners that are waiting for action events.

• The constructor for the JButton class is

where label is a string telling the user what the button does.
The button shown earlier on this slide is therefore created by

new JButton(label)

JButton pushMeButton = new JButton("Push Me");

Push Me

Detecting Action Events
• Before you can detect action events, you need to enable an

action listener for the buttons on the screen. The easiest
strategy is to call addActionListeners at the end of the
constructor. This call adds the program as a listener to all the
buttons on the display.

• You specify the response to a button click by overriding the
definition of actionPerformed with a new version that
implements the correct actions for each button.

• If there is more than one button in the application, you need
to be able to tell which one caused the event. There are two
strategies for doing so:

1. Call getSource on the event to obtain the button itself.

2. Call getActionCommand on the event to get the action
command string, which is initially set to the button label.

JButton to clear the screen
• Suppose we want to add a Clear button that erases the screen.

• Adding the button is accomplished in the constructor:

public DrawStarMap() {
 add(new JButton("Clear"), SOUTH);
 addActionListeners();
}

• The response to the button appears in actionPerformed:

public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand().equals("Clear")) {
 removeAll();
 }
}

Exercise: Interactive Stoplight
Write a GraphicsProgram that creates a stoplight and three
buttons labeled Red, Yellow, and Green, as shown in the sample
run below. Clicking on a button should send a message to the
stoplight to change its state accordingly.

GStoplightGUI

Red Yellow Green

public class GStoplightGUI extends GraphicsProgram {

 public void init() {
 stoplight = new GStoplight();
 add(stoplight, getWidth() / 2, getHeight() / 2);
 add(new JButton("Red"), SOUTH);
 add(new JButton("Yellow"), SOUTH);
 add(new JButton("Green"), SOUTH);
 addActionListeners();
}

 public void actionPerformed(ActionEvent e) {
 String cmd = e.getActionCommand();
 if (cmd.equals("Red")) {
 stoplight.setState(Color.RED);
 } else if (cmd.equals("Yellow")) {
 stoplight.setState(Color.YELLOW);
 } else if (cmd.equals("Green")) {
 stoplight.setState(Color.GREEN);
 }
 }

/* Private instance variables */
 private GStoplight stoplight;
}

Solution: Interactive Stoplight
/**
 * Defines a GObject subclass that displays a stoplight. The
 * state of the stoplight must be one of the Color values RED,
 * YELLOW, or GREEN.
 */
public class GStoplight extends GCompound {

/** Creates a new Stoplight object, which is initially GREEN */
 public GStoplight() {
 GRect frame = new GRect(FRAME_WIDTH, FRAME_HEIGHT);
 frame.setFilled(true);
 frame.setFillColor(Color.GRAY);
 add(frame, -FRAME_WIDTH / 2, -FRAME_HEIGHT / 2);
 double dy = FRAME_HEIGHT / 4 + LAMP_RADIUS / 2;
 redLamp = createFilledCircle(0, -dy, LAMP_RADIUS);
 add(redLamp);
 yellowLamp = createFilledCircle(0, 0, LAMP_RADIUS);
 add(yellowLamp);
 greenLamp = createFilledCircle(0, dy, LAMP_RADIUS);
 add(greenLamp);
 setState(Color.GREEN);
 }

The GStoplight Class

skip codepage 1 of 3

/**
 * Defines a GObject subclass that displays a stoplight. The
 * state of the stoplight must be one of the Color values RED,
 * YELLOW, or GREEN.
 */
public class GStoplight extends GCompound {

/** Creates a new Stoplight object, which is initially GREEN */
 public GStoplight() {
 GRect frame = new GRect(FRAME_WIDTH, FRAME_HEIGHT);
 frame.setFilled(true);
 frame.setFillColor(Color.GRAY);
 add(frame, -FRAME_WIDTH / 2, -FRAME_HEIGHT / 2);
 double dy = FRAME_HEIGHT / 4 + LAMP_RADIUS / 2;
 redLamp = createFilledCircle(0, -dy, LAMP_RADIUS);
 add(redLamp);
 yellowLamp = createFilledCircle(0, 0, LAMP_RADIUS);
 add(yellowLamp);
 greenLamp = createFilledCircle(0, dy, LAMP_RADIUS);
 add(greenLamp);
 setState(Color.GREEN);
 }

/** Sets the state of the stoplight */
 public void setState(Color color) {
 if (color.equals(Color.RED)) {
 redLamp.setFillColor(Color.RED);
 yellowLamp.setFillColor(Color.GRAY);
 greenLamp.setFillColor(Color.GRAY);
 } else if (color.equals(Color.YELLOW)) {
 redLamp.setFillColor(Color.GRAY);
 yellowLamp.setFillColor(Color.YELLOW);
 greenLamp.setFillColor(Color.GRAY);
 } else if (color.equals(Color.GREEN)) {
 redLamp.setFillColor(Color.GRAY);
 yellowLamp.setFillColor(Color.GRAY);
 greenLamp.setFillColor(Color.GREEN);
 }
 state = color;
 }

/** Returns the current state of the stoplight */
 public Color getState() {
 return state;
 }

The GStoplight Class

skip codepage 2 of 3

/** Sets the state of the stoplight */
 public void setState(Color color) {
 if (color.equals(Color.RED)) {
 redLamp.setFillColor(Color.RED);
 yellowLamp.setFillColor(Color.GRAY);
 greenLamp.setFillColor(Color.GRAY);
 } else if (color.equals(Color.YELLOW)) {
 redLamp.setFillColor(Color.GRAY);
 yellowLamp.setFillColor(Color.YELLOW);
 greenLamp.setFillColor(Color.GRAY);
 } else if (color.equals(Color.GREEN)) {
 redLamp.setFillColor(Color.GRAY);
 yellowLamp.setFillColor(Color.GRAY);
 greenLamp.setFillColor(Color.GREEN);
 }
 state = color;
 }

/** Returns the current state of the stoplight */
 public Color getState() {
 return state;
 }

/* Creates a filled circle centered at (x, y) with radius r */
 private GOval createFilledCircle(double x, double y, double r) {
 GOval circle = new GOval(x - r, y - r, 2 * r, 2 * r);
 circle.setFilled(true);
 return circle;
 }

/* Private constants */
 private static final double FRAME_WIDTH = 50;
 private static final double FRAME_HEIGHT = 100;
 private static final double LAMP_RADIUS = 10;

/* Private instance variables */
 private Color state;
 private GOval redLamp;
 private GOval yellowLamp;
 private GOval greenLamp;
}

The GStoplight Class

skip codepage 3 of 3

The JLabel Class
• The interactors you display on the screen sometimes don’t

provide the user with enough information. In such cases, it is
useful to include JLabel objects, which appear as text strings
in the user interface but do not respond to any events.

DrawStarMap

Small Large

• As an example, if you wanted to label a slider so that it was
clear it controlled size, you could use the following code to
produce the control strip shown at the bottom of the screen:

add(new JLabel("Small"), SOUTH);
add(sizeSlider, SOUTH);
add(new JLabel("Large"), SOUTH);

The JTextField Class
• Although Swing’s set of interactors usually make it possible

for the user to control an application using only the mouse,
there are nonetheless some situations in which keyboard input
is necessary.

• You can accept keyboard input in a user interface by using
the JTextField class, which provides the user with an area
in which it is possible to enter a single line of text.

HelloGUI

Name

Hello, world.
Hello, Eric.

• The HelloGUI program on the next slide illustrates the use
of the JTextField class in a ConsoleProgram that prints a
greeting each time a name is entered in the text field.

worldEric

The HelloGUI Program
import acm.program.*;
import java.awt.event.*;
import javax.swing.*;

/** This class displays a greeting whenever a name is entered */
public class HelloGUI extends ConsoleProgram {

 public void init() {
 nameField = new JTextField(10);
 add(new JLabel("Name"), SOUTH);
 add(nameField, SOUTH);
 nameField.addActionListener(this);
 }

 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == nameField) {
 println("Hello, " + nameField.getText());
 }
 }

/* Private instance variables */
 private JTextField nameField;
}

Notes on the JTextField Class
• The constructor for the JTextField class has the form

new JTextField(columns)

where columns is the number of text columns assigned to the
field. The space often appears larger than one might expect,
because Java reserves space for the widest characters.

• A JTextField generates an action event if the user presses
the ENTER key in the field. If you want your program to
respond to that action event, you need to register the program
as an action listener for the field. In the HelloGUI example,
the action listener is enabled by the statement

nameField.addActionListener(this);

• You can get and set the string entered in a JTextField by
calling the getText and setText methods.

