
Event-Driven Programming

Lecture 4

Jenny Walter
Fall 2008

Simple Graphics Program
import acm.graphics.*;

import java.awt.*;

import acm.program.*;

public class Circle extends GraphicsProgram {

 public void run() {

 GOval circle = new GOval(200,200,200,200);

 circle.setFilled(true);

 circle.setFillColor(new Color(200,0,0));

 add(circle);

 }

 public static void main(String[] args) {

 new Circle().start();

 }

}

The Java Event Model
Programs that support user control via mouse or keyboard are
called interactive programs.

User actions such as clicking or moving the mouse are called
events. Programs that respond to events are said to be event-
driven.

When you write an event-driven graphics program, you indicate
the events to which you wish to respond by designating an
object as a listener for that event. When the event occurs, a
message is sent to the listener, triggering a response.

Event Types
• Some Java event types:

– Mouse events, which occur when the user moves or clicks the mouse

– Keyboard events, which occur when the user types on the keyboard

– Action events, which occur in response to user-interface actions

• Each event type is associated with a set of methods that
specify how listeners should respond. These methods are
defined in a listener interface for each event type.

• As an example, one of the methods in the mouse listener
interface is mouseClicked. As you would expect, Java calls
that method when you click the mouse.

• Listener methods like mouseClicked define a parameter
that contains information about the event. In the case of
mouseClicked, the argument is a MouseEvent indicating
the location at which the click occurred.

Responding to Mouse Events

The most common mouse events are shown in the following
table, along with the name of the appropriate listener method:

mouseClicked(e)

mousePressed(e)

mouseReleased(e)

mouseMoved(e)

mouseDragged(e)

Called when the user clicks the mouse

Called when the mouse button is pressed

Called when the mouse button is released

Called when the user moves the mouse

Called when the mouse is dragged with the button down

The parameter e is a MouseEvent object, which provides more
data about the event, such as the location of the mouse.

You can make programs respond to mouse events by following
these general steps:

1. Define a run method that calls addMouseListeners()

2. Write new definitions of any listener methods you need.

Mouse Listeners in the ACM Libraries
Java’s approach to mouse listeners is not as simple as the
previous slide implies. To maximize efficiency, Java defines
two distinct mouse listener interfaces:

The MouseListener interface responds to mouse events that happen in
isolation or infrequently, such as clicking the mouse button.

The MouseMotionListener interface responds to the much more
rapid-fire events that occur when you move or drag the mouse.

The packages in the ACM Java Libraries adopt the following
strategies to make mouse listeners easier to use:

The Program class includes empty definitions for every method in the
MouseListener and the MouseMotionListener interfaces. Doing so
means that you don’t need to define all of these methods but can instead
simply override the ones you need.

The GraphicsProgram class defines the addMouseListeners

method, which adds the program as a listener for both types of events.

The net effect of these simplifications is that you don’t have to
think about the difference between these two interfaces.

A Simple Line-Drawing Program

public class DrawLines extends GraphicsProgram {

/* Initializes the program by enabling the mouse listeners */
 public void init() {
 addMouseListeners();
 }

/* Called on mouse press to create a new line */
 public void mousePressed(MouseEvent e) {
 line = new GLine(e.getX(), e.getY(), e.getX(), e.getY());
 add(line);
 }

/* Called on mouse drag to extend the endpoint */
 public void mouseDragged(MouseEvent e) {
 line.setEndPoint(e.getX(), e.getY());
 }

/* Private instance variables */
 private GLine line;
}

public class DrawLines extends GraphicsProgram {

/* Initializes the program by enabling the mouse listeners */
 public void run() {
 addMouseListeners(};
 }

/* Called on mouse press to create a new line */
 public void mousePressed(MouseEvent e) {
 line = new GLine(e.getX(), e.getY(), e.getX(), e.getY());
 add(line);
 }

/* Called on mouse drag to extend the endpoint */
 public void mouseDragged(MouseEvent e) {
 line.setEndPoint(e.getX(), e.getY());
 }

/* Private instance variables */
 private GLine line;

 public static void main(String[] args){
 new DrawLines().start();
 }
}

import acm.graphics.*;

import java.awt.*;

import acm.program.*;

import java.awt.event.*;

public class MovingCircle extends GraphicsProgram {

 private GOval circle;

 public void run() {

 circle = new GOval(200,200,200,200);

 circle.setFilled(true);

 circle.setFillColor(new Color(200,0,0));

 add(circle);

 addMouseListeners();

 }

 public void mouseMoved(MouseEvent e) {

 double x = e.getX() - circle.getWidth()/2;

 double y = e.getY() - circle.getHeight()/2;

 if (x < 0) x = 0;

 if (x > getWidth() - circle.getWidth())

 x = getWidth() - circle.getWidth();

 if (y < 0) y = 0;

 if (y > getHeight() - circle.getHeight())

 y = getHeight() - circle.getHeight();

 circle.setLocation(x,y);

 }

 public static void main(String[] args) {

 new MovingCircle().start();

 }

}

In this program, the Circle moves with
the mouse

Arrays
Collection of elements with the same data

type and pre-defined, fixed size
Array elements have an order
Support direct and random access
One-dimensional arrays

Declaration example
final int DAYS_PER_WEEK = 7;

double [] maxTemps = new double[DAYS_PER_WEEK];

Length of an array is accessible using data field
length (e.g., maxTemps.length = 7)

Use an index or subscript to access an array
element (e.g., maxTemps[0] = 5.0;)

Arrays

One-dimensional array of at most seven elements

Arrays

One-dimensional arrays (continued)
Initializer list example

double [] weekDayTemps = {82.0, 71.5, 61.8,

75.0, 88.3};

You can also declare array of object references

Multidimensional arrays
Use more than one index
Declaration example

final int DAYS_PER_WEEK = 7;

final int WEEKS_PER_YEAR = 52;

double[][] minTemps = new

 double[DAYS_PER_WEEK][WEEKS_PER_YEAR];

Arrays

A two-dimensional array

Arrays

• Passing an array to a method
– Declare the method as follows:

public double averageTemp(double[] temps,
int n)

– Invoke the method by writing:
double avg = averageTemp(maxTemps, 6);

– Location of array is passed to the method
• Cannot return a new array through this value

– Method can modify content of the array

Enhanced For Statement
• The for loop and arrays

for (ArrayElementType variableName : arrayName)

statement

• The enhanced for statement

int[] numbers = {1,2,3,4,5,6,7,8,9,10};

 for (int item : numbers) {

 System.out.println("Count is: " + item);

 }

Java Exceptions

• Exception
– Handles an error during execution

• Throw an exception
– To indicate an error during a method

execution

• Catch an exception
– To deal with the error condition

Catching Exceptions
• Java provides try-catch blocks

– To handle an exception

• Place statement that might throw an exception
within the try block
– Must be followed by one or more catch blocks
– When an exception occurs, control is passed to catch

block

• Catch block indicates type of exception you want
to handle

Catching Exceptions

• try-catch blocks syntax
try {

statement(s);

}

catch (exceptionClass identifier) {

statement(s);

}

• Some exceptions from the Java API cannot
be totally ignored
– You must provide a handler for that exception

Catching Exceptions

Figure 1-9Figure 1-9

Flow of control in a simple Java application

Catching Exceptions

• Types of exception
– Checked exceptions

• Instances of classes that are subclasses of
java.lang.Exception

• Must be handled locally or thrown by the method
• Used when method encounters a serious problem

– Runtime exceptions
• Occur when the error is not considered serious
• Instances of classes that are subclasses of
java.lang.RuntimeException

Throwing Exceptions

• throws clause
– Indicates a method may throw an exception

• If an error occurs during its execution

– Syntax
public methodName throws ExceptionClassName

• throw statement
– Used to throw an exception at any time
– Syntax

throw new exceptionClass(stringArgument);

• You can define your own exception class

Text Input and Output

• Input and output consist of streams
• Streams

– Sequence of characters that either come from or go to an
I/O device

– InputStream - Input stream class
– PrintStream - Output stream class

• java.lang.System provides three stream variables
– System.in – standard input stream
– System.out – standard output stream
– System.err – standard error stream

Input

• Prior to Java 1.5
BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

String nextLine = stdin.readLine();

StringTokenizer input = new
StringTokenizer(nextLine);

x = Integer.parseInt(input.nextToken());

y = Integer.parseInt(input.nextToken());

Input

• Java 1.5 – The Scanner class
int nextValue;

int sum=0;

Scanner kbInput = new Scanner(System.in);

nextValue = kbInput.nextInt();

while (nextValue > 0) {

sum += nextValue;

nextValue = kbInput.nextInt();

} // end while

kbInput.close();

Input

• Java 1.5 – The Scanner class (continued)
– More useful next methods

• String next();

• boolean nextBoolean();

• double nextDouble();

• float nextFloat();

• int nextInt();

• String nextLine();

• long nextLong();

• short nextShort();

Output
• Methods print and println

– Write character strings, primitive types, and objects to
System.out

– println terminates a line of output so next one starts
on the next line

– When an object is used with these methods
• Return value of object’s toString method is displayed
• You usually override this method with your own

implementation
– Problem

• Lack of formatting abilities

Output

• Method printf
– C-style formatted output method
– Syntax

printf(String format, Object... args)

– Example:
String name = "Jamie";

int x = 5, y = 6;

int sum = x + y;

System.out.printf("%s, %d + %d = %d", name,
x, y, sum);

//produces output Jamie, 5 + 6 = 11

Output

Figure 1-10Figure 1-10

Formatting example with printf

File Input and Output
• File

– Sequence of components of the same type that resides in
auxiliary storage

– Can be large and exists after program execution
terminates

• Files vs. arrays
– Files grow in size as needed; arrays have a fixed size
– Files provides both sequential and random access; arrays

provide random access

• File types
– Text and binary (general or nontext) files

Text Files
• Designed for easy communication with people

– Flexible and easy to use
– Not efficient with respect to computer time and storage

• End-of-line symbol
– Creates the illusion that a text file contains lines

• End-of-file symbol
– Follows the last component in a file

• Scanner class can be used to process text files

Text Files

Figure 1-11Figure 1-11

A text file with end-of-line and end-of-file symbols

Text Files
• Example

String fname, lname;

int age;

Scanner fileInput;

File inFile = new File("Ages.dat");

try {

fileInput = new Scanner(inFile);

while (fileInput.hasNext()) {

fname = fileInput.next();

lname = fileInput.next();

age = fileInput.nextInt();

age = fileInput.nextInt();

System.out.printf("%s %s is %d years old.\n",

fname, lname, age);

} // end while

fileInput.close();

} // end try

catch (FileNotFoundException e) {

System.out.println(e);

} // end catch

Text Files

• Open a stream to a file
– Before you can read from or write to a file
– Use class FileReader

• Constructor throws a FileNotFoundException

– Stream is usually embedded within an instance
of class BufferedReader
• That provides text processing capabilities

– StringTokenizer

• Used to break up the string returned by readLine
into tokens for easier processing

Text Files
• Example

BufferedReader input;

StringTokenizer line;

String inputLine;

try {

input = new BufferedReader(new FileReader("Ages.dat"));

while ((inputLine = input.readLine()) != null) {

line = new StringTokenizer(inputLine);

// process line of data

...

}

} // end try

catch (IOException e) {

System.out.println(e);

System.exit(1); // I/O error, exit the program

} // end catch

Text Files

File output
You need to open an output stream to the
file
Use class FileWriter
Stream is usually embedded within an
instance of class PrintWriter

That provides methods print and println

Text Files
Example

try {

PrintWriter output = new PrintWriter(new
FileWriter("Results.dat"));

output.println("Results of the survey");

output.println("Number of males: " +

 numMales);

output.println("Number of females: " +

 numFemales);

// other code and output appears here...

} // end try

catch (IOException e) {

System.out.println(e);

System.exit(1); // I/O error, exit the program

} // end catch

Text Files

Closing a file
Syntax

myStream.close();

Adding to a text file
When opening a file, you can specify if file
should be replaced or appended
Syntax

PrintWriter ofStream = new

 PrintWriter(new FileOutputStream

 ("Results.dat", true));

