
An Example Base Class
class Person

{

public Person(String n, int ag, String ad, String p)

 { name = n; age = ag; address = ad; phone = p; }

 //accesspr (getter) methods

 public String getName() { return name; }

 public int getAge() { return age; }

 public String getAddress() { return address; }

 public String getPhoneNumber() { return phone; }

 //mutator (setter) methods

 public void setAddress(String newAddress)

 { address = newAddress; }

 public void setPhoneNumber(String newPhone)

 { phone = newPhone; }

 public String toString() {return "Name: "+getName()+

 ", Age: "+getAge()+", Address: "+getAddress()+

 ", Phone: "+getPhone(); }

 private String name, address, phone;

 private int age;

}

Private instance

variables

Public

methods

Create a "derived" student class
• A student is a type of person

• Add a couple of fields and methods just for students:

– gpa field

– getGPA accessor

• Using inheritance, can say a student IS-A person, then

specify modifications

• Derived class must specify its own constructors

Accessors (Getters) are methods that access one (private) field in

a class. They typically have names starting with “get”.

Mutators (Setters) are methods that modify one (private) field in

a class. They typically have names starting with"set".

"family trees" of Classes

Conceptually, we can look at the class inheritance as a

tree (like a family tree) called a class diagram

class Person

class Student

class Person is the

superclass (base, parent,

ancestor) of Student

class Student is a

subclass (child,

descendent) or

derived class of PersonWe say Student "inherits"

certain fields or methods from Person

Modifications to Derived Classes

• Three types of modifications allowed:

1. Add new fields (e.g., gpa)

2. Add new methods (e.g., getGPA)

3. Override existing methods (e.g., toString)

class Student extends Person

{

 private double gpa;

 public Student(String n, int ag, String ad, String p, double g)

 {

 // Need something more here in constructor …

 gpa = g;

 }

 public String toString()

 {

 return getName() + " " + getGPA();

 }

 public double getGPA()

 {

 return gpa;

 }

}

The Student Class : Preliminary Declaration

Add a data field to constructor

Override a
base method

Add a method not in
base class

Light shading indicates fields that are private, and accessible only by
methods of the class. Dark shading in the Student class indicates fields that
are not accessible in the Student class (except by calling "getter" and "setter"

methods in the Person class), but are nonetheless present.

Memory Layout with Inheritance

Declared

private by

Person

Present, but

not

accessible

by Student

Constructors for Derived Classes

• Each derived class should include constructors

– If none present, a single zero-parameter constructor is
generated

• Calls the base class zero-parameter constructor

• Applies default initialization for any additional fields defined
in the derived class

• Good practice: call the superclass constructor first
in derived class constructor

Recall that the default initialization is 0 for primitive types and null
for reference types

The super Keyword

• super is the keyword used to explicitly call the
base (superclass) constructors

• Default constructor for a derived class is really

• super method can be called with parameters that
match the base class constructor

public Derived()

{

super();

}

Example: Student, a derived class

class Student extends Person

{

 private double gpa;

 public Student(String n, int ag, String ad, String p, double g)

 {

 super(n, ag, ad, p);

 gpa = g;

 }

 public String toString()

 {

 return super.toString() + " " + getGPA();

 }

 public double getGPA()

 {

 return gpa;

 }

}

Calls superclass
constructor with
four parameters

Can call superclass
methods using super

Partial overriding: use super to call a superclass
method, when we want to do what the base class does

plus a bit more, as in this example

Another derived class

class Employee extends Person

{

 private double salary;

 public Employee(String n, int ag, String ad, String p, double s)

 {

 super(n, ag, ad, p);

 salary = s;

 }

 public String toString()

 {

 return super.toString() + " " + getSalary();

 }

 public double getSalary()

 {

 return salary;

 }

}

Calls superclass
constructor with
four parameters

Can call superclass
methods using super

Type Compatibility

• Because a Student IS-A Person, a Student object
can be accessed by a Person reference

• p may reference any object that IS-A Person

• Any method in either the Person or Student class invoked
through the p reference is guaranteed to work because
methods defined for class Person cannot be removed by
a derived type

Student s = new Student (“Joe”, 26, “1 Main St”,

 “845-555-1212”, 4.0);

Person p = s;

System.out.println(“age is “ + p.getAge());

Why is this a big deal?

• Because it applies not only to assignment,

but also argument passing

– I.e., a method whose formal parameter IS-A

Person can receive any object that IS-A

Person, such as Student

public static boolean isOlder(Person p1, Person p2)

{

return p1.getAge() > p2.getAge();

}

Person p = new Person (…)

Student s = new Student (…)

Employee e = new Employee (…)

isOlder(p,p), isOlder(s,s), isOlder(e,e),

isOlder(p,e), isOlder(p,s), isOlder(s,p),

isOlder(s,e), isOlder(e,p), isOlder(e,s),

Consider this static method written in any class

Suppose some declarations are made... (arguments omitted)

Can use isOlder with all the following calls

For many, type compatibility of derived classes with the base class is the most
important thing about inheritance because it leads to massive indirect code reuse

Dynamic Binding and Polymorphism

Student s = new Student (“Joe”, 26, “1 Main St”,

“845-555-1212”, 4.0);

Employee e = new Employee (“Boss”, 42, “4 Main St”,

“854-555-1212”, 10000.0);

Person p = null;

if(((int)(Math.random() * 10)) % 2 == 0)

p = s;

else

p = e;

System.out.println(“Person is “ + p);

If the type of the reference (e.g., Person) and the class of the object
being referenced (e.g., Student) disagree, and they have different

implementations, whose implementation is used?

Do not know until program runs whether to use
Student’s toString or Employee’s toString

Polymorphism

• When we run the program, the dynamic type (i.e.,

the most specific type of the object being

referenced) will determine which method is used

Static type : a type associated with an entity at compile-time

(does not change at any time during program execution)

Dynamic type : a type associated with an entity at run-time

(may change on subsequent executions of the same statement)

Exceptions

• Objects that store information that is transmitted outside
the normal return sequence; not an intended part of the
program

• Propagated back through the calling sequence until a
routine catches the exception

• At this point, can use information in the object to provide
error handling

• Used to signal exceptional occurrences such as errors

• System generates its own exceptions and you can write
your own

You have already seen
java.lang.ArrayIndexOutOfBoundsException

Catching Exceptions with try and catch
public class ExceptionTest

{

 public static void main(String [] args){

 int numLines = 10;

 int currLine = 0;

 String[] array = getStrings(numLines);

 try {

 while(currLine <= numLines){

 System.out.println(array[currLine++]);

 }

 }

 catch (ArrayIndexOutOfBoundsException msg)

 {

 System.out.println(currLine + “invalid index.”);

 }

 }
 public static String[] getStrings(int nLines)

 …

the code to
check

the code to
execute on
exception

Throw Clause

• Programmer can generate an exception using

keyword throw

• Can create new message to produce in cases

where exceptions occur

catch (ArrayIndexOutOfBoundsException aioobx)

{

 throw new TooManyPeopleException(

 "Not enough space for more people");

}

Example

Defining Exceptions

• If you are throwing an exception that is not one

of the built-in Java exceptions, you must declare

it as a class in the same directory as the program

that uses it and extend RunTimeException.

public class TooManyPeopleException extends RunTimeException {

{

 public TooManyPeopleException(String msg) {

 super(msg);

 }

}

Example

Throws Clause

• Include throws clause when a method is

declared that may generate an exception that is

not derived from RunTimeException.

public static void readFile() throws IOException

{

...

}

Common example when reading from and writing to files

• We will see more on exceptions throughout the

 course.

Classes derived from

RunTimeException
Interfaces

• In order for objects to interact, they must "know" about
the public methods each supports, (I.e., exports.)

• Java application programming interface (API)
 requires classes to specify the interface they

 present to other objects.

• The major structural element in Java that supports an

API is the interface

==> Collection of method declarations and/or named constants with

no variables and no method bodies.

Interfaces

Interface: a collection of constants and method

declarations. An interface can't be instantiated.

 Methods in an interface do not have any code

within statement body. Has a ';' after

method definition line (signature).

public interface Speaker

{

public void speak ();

 public void announce (String str);

}

speak and announce are

method declarations in interface

Speaker

Implementing Interfaces

public class Philosopher implements Speaker

{

 public Philosopher (String thoughts)

 {

 philosophy = thoughts;

 }

 public void speak()

 {

 System.out.println(philosophy);

 }

 public void announce(String announcement)

 {

 System.out.println(announcement);

 }

 private String philosophy;

}

Philosopher class must

 declare a method for each of the

methods declared in the

interface

Any class that

extends Philosopher

now is subtype of

Speaker.

Interfaces
The Philosopher class could implement other methods for

which there is no declaration in the Speaker interface, but

it must have implementations of each interface method.

 A class implements an interface by providing

method implementations for each method

defined in the interface. The implementing class is
a subtype of the interface.

The keyword implements in the Philosopher class
header says the class is defining bodies for each
method in the interface.

Another Interface Example

public interface Rollable

{

 // Reselect the upward-pointing face of object

public void roll();

 // return the current value of the object

 public int value();

}

roll and value are

method declarations

in interface Rollable

This interface specifies that there must be roll and value methods

in each object that implements it.

public class Die implements Rollable {...}

Now Die is a subtype of the Rollable type. we can use a Die

object anywhere Rollable objects are required.

Multiple Inheritance

The ability to derive a class from more than one parent class

is known as multiple inheritance.

class Person {...}

class Employee

extends Person, Democrat {...}

class Democrat {...}

Multiple inheritance is NOT ALLOWED in Java
(i.e., a class can't extend more than one other class)

A Java Provision for Multiple

Inheritance...

interface Manager {...}

class Employee extends Person

implements Manager, Democrat {...}

interface Democrat {...}

class Person {...}

The Employee class would be a subclass of Person and a subtype of

Manager and Democrat. We could write a program that makes use of

Employee objects anywhere Person, Manager, or Democrat objects are

required!

Classes can
implement multiple
interfaces

implements

extends

Another Way Java Provides

for Multiple Inheritance...

interface Farmer {...}

class Employee extends Person

implements Senator {...}

interface Democrat {...}

class Person {...}

The Employee class would be a subclass of Person and a subtype of

Senator. We could write a program that makes use of Employee objects

anywhere Person, Senator, Farmer, or Democrat objects are required!

Interfaces can
extend multiple

interfaces

interface Senator extends Democrat, Farmer {...}

implements

extends

Multiple Interfaces
When a class implements an interface that extends another

interface, it must include all methods from each interface in

hierarchy

interface Retirement extends StatePlan

interface StatePlan

Faculty and Staff must include methods of both Retirement and StatePlan interfaces

class Person {...}

class Employee {...}class Student {...}

class Staff extends Employee

implements Retirement {...}

class Faculty extends Employee

implements Retirement {...}

implements

extends

Dynamic Binding and Polymorphism

StatePlan s = new Faculty (“Joe”, 26, “1 Main St”,

“845-555-1212”, 10000.0);

StatePlan e = new Staff (“Boss”, 42, “4 Main St”,

“854-555-1212”, 10000.0);

StatePlan p = null;

if(((int)(Math.random() * 10)) % 2 == 1)

p = s;

else

p = e;

System.out.println(“Person is “ + p);

Even though you can't create an object from an interface, you can use
the interface as a type when you declare variables. The following
code is legal:

Do not know until program runs whether to use
Faculty's toString or Staff's toString

Type Compatibility

• Because a Student IS-A Person, a Student object
can be reference by a Person type variable

• p may reference any object that IS-A Person

• Any method defined in the Person class or defined in the
Person class and overridden in the Student class can
be invoked through the p reference

Student s = new Student (“Joe”, 26, “1 Main St”,

 “845-555-1212”, 4.0);

Person p = s;

System.out.println(“age is ” + p.getAge());

Type Compatibility

• But we can’t call methods defined only in class
Student by using the reference p as it appears
above. This is because a Person is not
necessarily a Student.

Student s = new Student (“Joe”, 26, “1 Main St”,

 “845-555-1212”, 4.0);

Person p = s;

System.out.println(“age is ” + p.getAge());

System.out.println(“GPA is ” + p.getGPA());

// LINE ABOVE CAUSES ERROR

Type Compatibility

• if p is cast as a Student the code works

• RULE: If a superclass identifier references a
subclass object, then you need to cast the
identifier using (subclass) cast when calling a
subclass method.

Student s = new Student (“Joe”, 26, “1 Main St”,

 “845-555-1212”, 4.0);

Person p = s;

System.out.println(“age is ” + p.getAge());

System.out.println(“GPA is ” +

((Student)p).getGPA());

// LINE ABOVE IS OK if we cast p as a Student

Abstract Classes
• Abstract classes lie between interfaces and

complete classes.

==> Class that may contain empty method

declarations as well as fully defined methods and

instance variables.

! Not possible to instantiate an abstract class.

! Subclasses must provide an implementation for

 each abstract method in the parent class.

! "Partial" implementation of a class. Derived

 classes complete the definition.

abstract public class Matrix implements Graph {...}

An Abstract Class

Public abstract class Attraction {

 public int minutes;

 public Attraction() {minutes = 75;}

 public Attraction(int m) {minutes = m;}

 public int getMinutes() {return minutes;}

 public void setMinutes(int m) {minutes = m;}

 public abstract int rating();

}

The purpose of an abstract class is to define inheritable, shared

variables and methods and to impose requirements through

abstract methods.

Any classes derived from Attraction would inherit the public

members and would have to provide an implementation of the

abstract method rating.

A Class Derived from Attraction

public class Movie extends Attraction {

 public int script, acting, direction;

 public Movie() {script=5; acting=5; direction = 5;}

 public Movie(int m) {super(m);}

 public int rating() {

 return script+acting+direction+getMinutes();

}

Any classes derived from Attraction would inherit the public

members and would have to provide an implementation of the

abstract method rating.

class GenericArray {

 public static void main (String[] args) {

 Object[] array = new Object[4];

 array[0] = "String 1";

 array[1] = new Integer(1);

 array[2] = new Person();

 array[3] = new Integer("57");

 for (int i = 0; i < array.length; i++) {

 if (array[i] instanceof String) {

 String temp = (String)array[i];

 System.out.println(temp);

 }

 else if (array[i] instanceof Integer) {

 int x = ((Integer)array[i]).intValue();

 System.out.println(x);

 }

 else if (array[i] instanceof Person) {

 int y = ((Person)array[i]).getAge();

 System.out.println(y);

 }

 }

 }

}

Example of creating

array of Objects and

testing and casting each

before printing

Reading Command-Line Arguments
• Command-line arguments are read through the main method's

array of Strings parameter, args (or whatever you call it).

• Since command-line arguments are Strings, they must be
converted to whatever types your program requires.

• Common to read the names of input and output files from the
command-line.

Appendix

class Ticket

{

 public Ticket()

 {

 System.out.println("Calling "+

 "constructor");

 serialNumber = ++ticketCount;

 }

 public int getSerial()

 {

 return serialNumber;

 }

 public String toString()

 {

 return "Ticket #" + getSerial();

 }

 public static int getTicketCount()

 {

 return ticketCount;

 }

 private int serialNumber;

 private static int ticketCount = 0;

}

class TestTicket

{

 public static void main(String []

 args)

 {

 Ticket t1;

 Ticket t2;

 System.out.println("Ticket count"

 +" is " +

 Ticket.getTicketCount());

 t1 = new Ticket();

 t2 = new Ticket();

 System.out.println("Ticket count"

 +" is " +

 Ticket.getTicketCount());

 System.out.println(

 t1.getSerial());

 System.out.println(

 t2.getSerial());

 }

}

An example class and test routine. Try to figure out what it does, looking up

the constructs you don’t understand Another Example of Inheritance
public class Thought {

 //prints a message

 public void message() {

 System.out.println("I feel like I'm diagonally parked in "+

 "a parallel universe.");

 System.out.println();

 }

}

Another Example of Inheritance

public class Advice extends Thought {

 // prints a message by overriding parent's version. Then

 // explicitly calls parent method using super

 public void message(){

 System.out.println("Warning: Dates in calendar are "+

 "closer than they appear.");

 System.out.println();

 super.message();

 }

}

Another Example of Inheritance

public class Messages {

 // instantiates 2 objects and invokes the message

 // method in each

 public static void main(String[] args) {

 Thought parked = new Thought();

 Advice dates = new Advice();

 parked.message();

 dates.message(); //overridden

 }

}

Another Example of Inheritance
public interface Transportable

{

 public static final int MAXINT = 1783479;

 public int weight();

 public boolean isHazardous();

}

public interface Sellable

{

 public String description();

 public int listPrice();

 public int lowestPrice();

}

public interface InsurableItem extends Transportable,

Sellable

{

 public int insuredValue();

}

public class Photograph implements Sellable {

 private String descript;

 private int price;

 private boolean color;

 public Photograph(String desc, int p, boolean c) {

 descript = desc;

 price = p;

 color = c;

 }

 public String description() { return descript;}

 public int listPrice() {return price;}

 public int lowestPrice() {return price/2;}

}

public class BoxedItem implements InsurableItem {

 private String descript;

 private int price = MAXINT,weight,height=0,width=0,depth=0;

 private boolean haz;

 public BoxedItem(String desc, int p, int w, boolean h) {

 descript = desc;

 price = p;

 weight = w;

 haz = h;

 }

 public String description() {return descript;}

 public int listPrice() {return price;}

 public int lowestPrice() {return price/2;}

 public int weight() {return weight;};

 public boolean isHazardous() {return haz;}

 public int insuredValue() {return price*2;}

 public boolean equals (Sellable x){

 if (x instanceof BoxedItem){

 return x.listPrice()== this.price && x.weight() ==

 this.weight;

 }

 return false;

 }

}

class TestSellable {

 public static void main(String[] args) {

 Photograph p = new Photograph("landscape", 5000, true);

 BoxedItem b = new BoxedItem("statue", 10000, 2000,false);

 BoxedItem c = new BoxedItem("rug", 2000, 50, true);

 BoxedItem a = new BoxedItem("statue", 10000, 2000,false);

 InsurableItem s = null;

 if (b.equals(p))

 System.out.println("b and p equal");

 else System.out.println("b not equal to p");

 if (b.equals(c))

 System.out.println("b and c equal");

 else System.out.println("b not equal to c");

 if (b.equals(a)){

 s = a;

 System.out.println("b, s, and a equal");

 }

 else System.out.println("b not equal to a");

 }

}

