Recursive Solutions

Ch. 3: Recursion

Recursive Solutions

Four questions for constructing recursive solutions

1. Can you define the problem in terms of a smaller problem of the same type?
2. Does each recursive call diminish the size of the problem?
3. What instance of the problem can serve as the base case?
4. As the problem size diminishes, will you reach this base case?

Recursion

-An extremely powerful problem-solving technique
-Breaks a problem into smaller identical problems
-An alternative to iteration, but not always a better one
-An iterative solution involves loops
"Recursion can provide elegantly simple solutions to problems of great complexity. However, some recursive solutions are impractical because they are so inefficient."

Binary Search
 VS

Sequential Search

Some complex and time-consuming problems have recursive solutions that are very simple
A running example that the author uses in Ch .3 is Binary Search.

- Suppose you are given a sequence of values that are stored in non-decreasing order and you want to locate a particular value in that sequence.

Binary Search

A high-level binary search of an in-order array
if (anArray is of size 1) \{
Determine if anArray's item is equal to value
\}
else \{
Find the midpoint of anArray
Determine which half of anArray contains value
if (value is in the first half of anArray) \{
binarySearch (first half of anArray, value)
\}
else \{
binarySearch (second half of anArray, value)
\} $/ /$ end if
\} // end if

Characteristics of Recursive Methods

1. One of the actions in the method is to call itself, one or more times $=$ a recursive call.
2. Each successive recursive call involves an identical, but smaller problem.
3. Recursion ends when the problem size satisfies a condition identifying a single base case or one of a number of base cases.
4. Eventually, a base case is executed and the recursion stops.

Recursive Functions

- The easiest examples of recursion to understand are functions in which the recursion is clear from the definition. As an example, consider the factorial function, which can be defined in either of the following ways:

$$
\begin{aligned}
& n!=n \times(n-1) \times(n-2) \times \cdots \times 3 \times 2 \times 1 \\
& n!= \begin{cases}1 & \text { if } n \text { is } 0 \\
n \times(n-1)! & \text { otherwise }\end{cases}
\end{aligned}
$$

- The second definition leads directly to the following code:

```
public static int factorial(int n) {
    if (n == 0) {
        return
    } else {
        return n * factorial(n - 1);
    }
```


Simulating the factorial Method

The Recursive Paradigm

- Most recursive methods you encounter in an introductory course have bodies that fit the following general pattern:

```
if (test for a simple case) {
    Compute and return the simple solution without using recursion.
} else {
    Divide the problem into one or more subproblems that have the same form.
    Solve each of the subproblems by calling this method recursively
    Return the solution from the results of the various subproblems.
}
```

- Finding a recursive solution is mostly a matter of figuring out how to break it down so that it fits the paradigm. When you do so, you must do two things:

1. Identify simple cases that can be solved without recursion.
2. Find a recursive decomposition that breaks each instance of the problem into simpler subproblems of the same type, which you can then solve by applying the method recursively.

Static Methods

Methods that don't need access to instance variables and are self-contained (depending only on parameter input) are good candidates to be designated as static methods.

All the recursive methods in Ch .3 of our book are declared static because they only depend on parameter values.

Static methods can be easily tested with DrJava.

The Recursive "Leap of Faith"

- The purpose of going through the complete decomposition of the calculation of factorial (5) is to convince you that the process works and that recursive calls are in fact no different from other method calls, at least in their internal operation.

Our book uses a systematic trace of recursive methods called a box trace, very similar to the method stack shown on the last slide.

- As you write a recursive program, it is important to believe that any recursive call will return the correct answer as long as the arguments continually get closer to a stopping condition.
- Believing that to be true-even before you have completed the code-is called the recursive leap of faith.

Tracing Recursive Methods

Box trace

- A systematic way to trace the actions of a recursive method
- Each box roughly corresponds to an activation record
- An activation record
- Contains a method's local environment at the time of and as a result of the call to the method

Box Trace

1. Label each recursive call in the body of the recursive method.
2. Represent each call to the method by a new box containing the method's local environment.
a) values of local variables and parameters
b) placeholder for return value and operation performed
3. Draw an arrow from box to box, where each represents another recursive call.
4. Cross off boxes as methods return

Recursive Methods

As a programmer, you need to ensure that all recursive calls bring the execution closer to the stopping condition.

The simpler cases must eventually reach the stopping condition or the method will call itself infinitely.

In Java, when a method calls itself a very large number of times, the stack gets full and a "Stack Overflow" occurs.

Iterative Version

- This is an iterative method to print a String in reverse

```
```

public static void writeStringBackwards(String s) {

```
```

public static void writeStringBackwards(String s) {
for (int i = s.length()-1; i >= 0; i--) {
for (int i = s.length()-1; i >= 0; i--) {
System.out.print(s.charAt(i));
System.out.print(s.charAt(i));
}
}
System.out.println();
System.out.println();
}

```
```

}

```
```


Recursive Version

- This is a recursive method to print a String in reverse

```
public static void writeBackward(String s, int size) {
    if (size==0) {
        System.out.println();
    }
    else {
        // print the last character
        System.out.print(s.substring(size-1, size));
        // write the rest of the string in reverse
        writeBackward(s, size - 1);
    }
}
```

In this example, the base case is reached when size $=0$.
The recursive call is made on the input string minus the last character (str length is closer to the empty string).

Recursive Version

- This is another recursive method to print a String in reverse

```
public static void writeBackward(String s) {
    if (s.length() > 0) {
        // write the rest of the string backward
        writeBackward(s.substring(1));
        // print the first character
        System.out.print(s.charAt(0));
    }
    System.out.println()
}
```

Like the last example, the base case is reached when size $=0$.

The recursive call is made on the input string minus the first character (str length is closer to the empty string).

Recursive Methods

- This is a recursive method to reverse a String, returning a String instead of printing one out.

```
public static String recRevString(String str) {
    if (str.length() == 0) {
        return ""
    } else {
        seturn recRevString(str.substring(1)) +
                str.charAt(0);
    }
}
```

In this example, the base case is reached when the length of the input string is zero.
The recursive call is made on the input string minus the first character (str length is closer to the empty string).

Recursive Methods

- Exercise: Write a recursive method to return the sum of all the numbers in a given input array

Recursive Methods

- Exercise: Write a recursive method to determine if a given String is a palindrome.

These examples illustrate the essential features of a recursive method:

1. A base case that has no recursive call.
2. A recursive case that contains a call to the containing method, passing in an argument that is closer to the base case than the value of the current parameter.

Multiplying Rabbits (The Fibonacci Sequence)

Next three problems

- Require you to count certain events or combinations of events or things
- Contain more than one base cases
- Are good examples of inefficient recursive solutions

Multiplying Rabbits (The Fibonacci Sequence)

Problem

How many pairs of rabbits are alive in month n ? Recurrence relation
$\operatorname{rabbit}(\mathrm{n})=\operatorname{rabbit}(\mathrm{n}-1)+\operatorname{rabbit}(\mathrm{n}-2)$

Multiplying Rabbits (The Fibonacci Sequence)

Base cases

rabbit(2), rabbit(1)
Recursive definition
$\operatorname{rabbit}(\mathrm{n})= \begin{cases}1 & \text { if } \mathrm{n} \text { is } 1 \text { or } 2 \\ \operatorname{rabbit}(\mathrm{n}-1)+\operatorname{rabbit}(\mathrm{n}-2) & \text { if } \mathrm{n}>2\end{cases}$

Fibonacci sequence
The series of numbers rabbit(1), rabbit(2), rabbit(3), and so on

NOT an efficient solution for this problem because each solution requires many redundant computations
-"Facts" about rabbits

- Rabbits never die
- A rabbit reaches sexual maturity exactly two months after birth, that is, at the beginning of its third month of life
- Rabbits are always born in male-female pairs
- At the beginning of every month, each sexually mature male-female pair gives birth to exactly one male-female pair

Multiplying Rabbits (The Fibonacci Sequence)

Organizing a Parade

Rules about organizing a parade
The parade will consist of bands and floats in a single line
One band cannot be placed immediately after another
Problem
How many ways can you organize a parade of length n ?

Organizing a Parade

```
Let:
    P(n) be the number of ways to organize a parade of length n
    F(n) be the number of parades of length n that end with a float
    B}(n)\mathrm{ be the number of parades of length n that end with a band
Then
    P(n)=F(n)+B(n)
```


Mr. Spock's Dilemma
 (Choosing k out of n Things)

Problem
How many different choices are possible for exploring k planets out of n planets in a solar system?
Let
$c(n, k)$ be the number of groups of k planets chosen from n

Finding the largest item in an array

```
if (array has only one item)
    max(array) is the item
else
    max(array) is the maximum of max(left half of array) and
    max(right half of array)
```


Mr. Spock's Dilemma (Choosing k out of n Things)

In terms of Planet X:
$\mathrm{c}(\mathrm{n}, \mathrm{k})=$ (the number of groups of k planets that include Planet X)
$+$
(the number of groups of k planets that do not include Planet X)

Mr. Spock's Dilemma
 (Choosing k out of n Things)

The number of ways to choose k out of n things is the sum of
The number of ways to choose $k-1$ out of $n-1$ things and
The number of ways to choose k out of $n-1$ things
$\mathrm{c}(\mathrm{n}, \mathrm{k})=\mathrm{c}(\mathrm{n}-1, \mathrm{k}-1)+\mathrm{c}(\mathrm{n}-1, \mathrm{k})$

