
Ch. 3:  Recursion

Recursive Solutions

Recursion

–An extremely powerful problem-solving technique

–Breaks a problem into smaller identical problems

–An alternative to iteration, but not always a better one

•An iterative solution involves loops

"Recursion can provide elegantly simple

solutions to problems of great complexity.

However, some recursive solutions are

impractical because they are so inefficient."

Four questions for constructing recursive solutions

1. Can you define the problem in terms of a smaller

problem of the same type?

2. Does each recursive call diminish the size of the

problem?

3. What instance of the problem can serve as the base

case?

4. As the problem size diminishes, will you reach this

base case?

Recursive Solutions
Binary Search

vs

Sequential Search

Some complex and time-consuming problems have

recursive solutions that are very simple

A running example that the author uses in Ch. 3 is

Binary Search.

• Suppose you are given a sequence of values that

are stored in non-decreasing order and you want to

locate a particular value in that sequence.

Binary Search

A high-level binary search of an in-order array
if (anArray is of size 1) {

Determine if anArray’s item is equal to value

}

else {

Find the midpoint of anArray

Determine which half of anArray contains value

if (value is in the first half of anArray) {

  binarySearch (first half of anArray, value)

}

else {

  binarySearch(second half of anArray, value)

} // end if

} // end if

Binary search is an example of a "divide-and-conquer" solution

1. One of the actions in the method is to call itself, one or

more times = a recursive call.

2. Each successive recursive call involves an identical,

but smaller problem.

3. Recursion ends when the problem size satisfies a

condition identifying a single base case or one of a

number of base cases.

4. Eventually, a base case is executed and the recursion

stops.

Characteristics of Recursive

Methods



Recursive Functions
• The easiest examples of recursion to understand are functions

in which the recursion is clear from the definition.  As an
example, consider the factorial function, which can be defined
in either of the following ways:

n!  =  n x (n - 1) x (n - 2) x . . . x 3 x 2 x 1

n!  =
n x (n - 1)!

1 if n is 0

otherwise

• The second definition leads directly to the following code:

public static int factorial(int n) {
   if (n == 0) {
      return 1;
   } else {
      return n * factorial(n - 1);
   }
}

Methods that don't need access to instance variables and are

self-contained (depending only on parameter input) are good

candidates to be designated as static methods.

All the recursive methods in Ch. 3 of our book are declared

static because they only depend on parameter values.

Static methods can be easily tested with DrJava.

Static Methods

Simulating the factorial Method

skip simulation

Factorial

Enter n:         5

5! = 120

public void calcFactorial() {

   int n = this.readInt("Enter n: ");

   println(n + "! = " + factorial(n) );

}
n

5

120

private int factorial(int n) {

   if (n == 0) {

      return 1;

   } else {

      return n * factorial(n - 1);

   }

}

n

524

private int factorial(int n) {

   if (n == 0) {

      return 1;

   } else {

      return n * factorial(n - 1);

   }

}

n

46

private int factorial(int n) {

   if (n == 0) {

      return 1;

   } else {

      return n * factorial(n - 1);

   }

}

n

32

private int factorial(int n) {

   if (n == 0) {

      return 1;

   } else {

      return n * factorial(n - 1);

   }

}

n

21

private int factorial(int n) {

   if (n == 0) {

      return 1;

   } else {

      return n * factorial(n - 1);

   }

}

n

11

private int factorial(int n) {

   if (n == 0) {

      return 1;

   } else {

      return n * factorial(n - 1);

   }

}

n

0

private int factorial(int n) {

   if (n == 0) {

      return 1;

   } else {

      return n * factorial(n - 1);

   }

}

n

0

The Recursive “Leap of Faith”
• The purpose of going through the complete decomposition of

the calculation of factorial(5) is to convince you that the
process works and that recursive calls are in fact no different
from other method calls, at least in their internal operation.

Our book uses a systematic trace of recursive methods called
a box trace, very similar to the method stack shown on the
last slide.

• As you write a recursive program, it is important to believe
that any recursive call will return the correct answer as long
as the arguments continually get closer to a stopping
condition.

• Believing that to be true—even before you have completed
the code—is called the recursive leap of faith.

The Recursive Paradigm
• Most recursive methods you encounter in an introductory

course have bodies that fit the following general pattern:

if (test for a simple case) {

   Compute and return the simple solution without using recursion.

} else {

   Divide the problem into one or more subproblems that have the same form.

   Solve each of the subproblems by calling this method recursively.

   Return the solution from the results of the various subproblems.

}

• Finding a recursive solution is mostly a matter of figuring out
how to break it down so that it fits the paradigm.  When you
do so, you must do two things:

Identify simple cases that can be solved without recursion.1.

Find a recursive decomposition that breaks each instance of
the problem into simpler subproblems of the same type, which
you can then solve by applying the method recursively.

2.

Tracing Recursive Methods

Box trace

– A systematic way to trace the actions of a recursive

method

– Each box roughly corresponds to an activation record

– An activation record

•  Contains a method’s local environment at the time

of and as a result of the call to the method



1. Label each recursive call in the body of the recursive

method.

2. Represent each call to the method by a new box

containing the method's local environment.

a) values of local variables and parameters

b) placeholder for return value and operation performed

3. Draw an arrow from box to box, where each

represents another recursive call.

4. Cross off boxes as methods return

Box Trace Tracing the fact method

• A method’s local
environment includes:

– The method’s local
variables

– A copy of the actual
value arguments

– A return address in the
calling routine

– The value of the
method itself

n = 3

A: fact(n-1) = ?

return 3 * ?

Recursive Methods

As a programmer, you need to ensure that all recursive

calls bring the execution closer to the stopping condition.

The simpler cases must eventually reach the stopping
condition or the method will call itself infinitely.

In Java, when a method calls itself a very large number of

times, the stack gets full and a "Stack Overflow" occurs.

A Recursive void Method:

Writing a String Backward

Problem

Given a string of characters, print it in reverse order

Recursive solution

Each recursive step of the solution diminishes by 1 the
length of the string to be written backward

Base case

Print the empty string backward

Iterative Version
• This is an iterative method to print a String in reverse

 public static void writeStringBackwards(String s) {

      for (int i = s.length()-1; i >= 0; i--) {

         System.out.print(s.charAt(i));

      }

      System.out.println();

   }

Recursive Version
• This is a recursive method to print a String in reverse

  public static void writeBackward(String s, int size) {
      if (size==0) {

         System.out.println();

      } 

      else {

         // print the last character

         System.out.print(s.substring(size-1, size));

         // write the rest of the string in reverse

         writeBackward(s, size - 1);

      }

   }

In this example, the base case is reached when size = 0.

The recursive call is made on the input string minus the
last character (str length is closer to the empty string).



Recursive Version
• This is another recursive method to print a String in reverse

   public static void writeBackward(String s) {
      if (s.length() > 0) {

         // write the rest of the string backward

         writeBackward(s.substring(1));

         // print the first character

         System.out.print(s.charAt(0));

      }

      System.out.println();

   }

 

Like the last example, the base case is reached when

size = 0.

The recursive call is made on the input string minus the

first character (str length is closer to the empty string).

Recursive Methods
• This is a recursive method to reverse a String, returning a

String instead of printing one out.

public static String recRevString(String str) {

   if (str.length() == 0) {

      return "";

   } else {

      return recRevString(str.substring(1)) + 

             str.charAt(0);

   }

}

In this example, the base case is reached when the

length of the input string is zero.

The recursive call is made on the input string minus the
first character (str length is closer to the empty string).

Recursive Methods
• Exercise:  Write a recursive method to return the sum of all

the numbers between 1 and n

private static int recSum(int n) {

   if (n == 0) {

      return 0;

   } else {

      return n + recSum(n-1);

   }

}

In this example, the stopping case is reached when the

input parameter n is equal to 0.

Recursive Methods
• Exercise:  Write a recursive method to return the sum of all

the numbers in a given input array

private static int recSumArray(int[] arr, int j) {

   if (j == arr.length) {

      return 0;

   } else {

      return arr[j] + recSumArray(arr,j+1);

   }

}

In this example, the stopping case is reached when the

input parameter j is equal to the length of the array and

the recursive call is made by passing in the array and j
incremented by 1, bringing j closer to the stopping case.

Recursive Methods
• Exercise:  Write a recursive method to raise a base to an

exponent power

private static double recPower(double base, int exponent) {

   if (exponent == 0) {

      return 1;

   } else {

      return base * this.recPower( base, exponent - 1);

   }

}

These examples illustrate the essential features of a recursive
method:

1.  A base case that has no recursive call.
2.  A recursive case that contains a call to the containing method,
     passing in an argument that is closer to the base case than the
     value of the current parameter.

Recursive Methods
• Exercise:  Write a recursive method to determine if a given

String is a palindrome.

 private boolean isPalindrome(String str) {
      if (str.length() == 0 || str.length() == 1) {

         return true;

      } else {

         return(str.charAt(0) == str.charAt(str.length()-1)) &&

            this.isPalindrome(str.substring(1,str.length()-1));

      }

   }

In this example, there are two base cases; one for even-

and one for odd-length palindromes.

The recursive call is made on the input string minus the
first and last character (str is closer to the empty string on

every call).



Next three problems

– Require you to count certain events or combinations of

events or things

– Contain more than one base cases

– Are good examples of inefficient recursive solutions

Multiplying Rabbits

(The Fibonacci Sequence)

•“Facts” about rabbits

– Rabbits never die

– A rabbit reaches sexual maturity exactly two months
after birth, that is, at the beginning of its third month of
life

– Rabbits are always born in male-female pairs

• At the beginning of every month, each sexually
mature male-female pair gives birth to exactly one
male-female pair

Multiplying Rabbits

(The Fibonacci Sequence)

Problem

How many pairs of rabbits are alive in month n?

Recurrence relation

rabbit(n) = rabbit(n-1) + rabbit(n-2)

Multiplying Rabbits

(The Fibonacci Sequence)

Multiplying Rabbits

(The Fibonacci Sequence)

Base cases

rabbit(2), rabbit(1)

Recursive definition
rabbit(n) =      1 if n is 1 or 2

         rabbit(n-1) + rabbit(n-2) if n > 2

Fibonacci sequence

The series of numbers rabbit(1), rabbit(2), rabbit(3), and

so on

NOT an efficient solution for this problem because each

solution requires many redundant computations

Organizing a Parade

Rules about organizing a parade

The parade will consist of bands and floats in a single line

One band cannot be placed immediately after another

Problem

How many ways can you organize a parade of length n?



Organizing a Parade

Let:

P(n) be the number of ways to organize a parade of length n

F(n) be the number of parades of length n that end with a float

B(n) be the number of parades of length n that end with a band

Then

P(n) = F(n) + B(n)

Finding the largest item in an array

if (array has only one item)

max(array) is the item

else

max(array) is the maximum of max(left half of array) and

max(right half of array)

Mr. Spock’s Dilemma

(Choosing k out of n Things)

Problem

How many different choices are possible for exploring k

planets out of n planets in a solar system?

Let

c(n, k) be the number of groups of k planets chosen from

n

Mr. Spock’s Dilemma

(Choosing k out of n Things)

In terms of Planet X:

c(n, k) = (the number of groups of k planets that

      include Planet X)

            +

     (the number of groups of k planets that

       do not include Planet X)

Mr. Spock’s Dilemma

(Choosing k out of n Things)

The number of ways to choose k out of n things is the sum of

The number of ways to choose k-1 out of n-1 things

and

The number of ways to choose k out of n-1 things

c(n, k) = c(n-1, k-1) + c(n-1, k)

The End


