Chapter 4 -~ Abstract Data Types

Data Abstraction: The Walls

[EH]
T AL

First
implemen-
tation Q

=
! Second é
=

implemen-
tation

[EHRHAREEH

Figure 4-1

Isolated tasks: the implementation of task T does not affect task Q

© 2006 Pearson Addison-Wesley. Al rights reserved 41 W © 2006 Pearson Addison-Wesley. Al rights reserved 4-2

Abstract Data Types -~ Abstract Data Types

¢ The isolation of modules is not total

— Methods’ specifications, or contracts, govern how they interact * Abstract data type (ADT)
with each other — An ADT is composed of
* A collection of data
* A set of operations on that data
— Specifications of an ADT indicate
Program Request to perform operation Implementation . .
;:‘:t‘h‘::ss of method S * What the ADT operations do, not how to implement
Result of operation them
— Implementation of an ADT
* Includes choosing a particular data structure
Figure 4-2
A slit in the wall
© 2006 Pearson Addison-Wesley. All rights reserved 4-3 wf © 2006 Pearson Addison-Wesley. All rights reserved 4-4

Abstract Data Types -~ Abstract Data Types

Interface

e Data structure

— A construct that is defined within a programming
language to store a collection of data

— Example: arrays remove
Program 2 < on "Da:a
¢ ADTs and data structures are not the same | Request to perform operation structure
L Data abstraction Result of operation
. . display
— Results in a wall of ADT operations between data
structures and the program that accesses the data within Wall of ADT operations

these data structures Figure 4-4

A wall of ADT operations isolates a data structure from the program that uses it

© 2006 Pearson Addison-Wesley. Al rights reserved 4-5 W © 2006 Pearson Addison-Wesley. Al rights reserved 46

b

b

b

Specifying ADTs

it
49
ootk

ogples
émaa(
chroken

Figure 4-5
A grocery list

© 2006 Pearson Addison-Wesley. All rights reserved

e Inalist
— Except for the first and last
items, each item has
* A unique predecessor
* A unique successor
— Head or front
¢ Does not have a predecessor
— Tail or end

¢ Does not have a successor

Implementing ADTs

Program

Figure 4-9
Violating the wall of ADT operations

© 2006 Pearson Addison-Wesley. All rights reserved

47
remove
Data
structure
display
Wall of ADT operations
49

An Array-Based Implementation

of the ADT List

* An array-based implementation
— A list’s items are stored in an array items

— A natural choice

* Both an array and a list identify their items by

number

— A list’s kh item will be stored in items [k-1]

© 2006 Pearson Addison-Wesley. All rights reserved

b

b

b

Implementing ADTs

Program Data
Request to perform operation structure
Result of operation
Wall of ADT operations
Figure 4-8
ADT operations provide access to a data structure
© 2006 Pearson Addison-Wesley. All rights reserved 4-8
Java Classes Revisited
1 1 1 1 1 1 1 1 1 1 .
i i Figure 4-10
An object’s data and
Request methods are encapsulated
e
Methods
-~
Results
% Data
IIIII III.II.IlIIII.IIII
Il 1 I 1 1 1 1 1 I 1
T I I I I I I 1 I I
© 2006 Pearson Addison-Wesley. All rights reserved 4-10
An Array-Based Implementation
of the ADT List
Array indexes
0 1 2 3 k-1 MAX_LIST- 1
|12|3|19|100| 5|1O|18|7 _7| .|7
numItems 1 2 3 4 k MAX_LIST
items
ADT list positions
Figure 4-11
An array-based implementation of the ADT list
© 2006 Pearson Addison-Wesley. All rights reserved 4-12

