Chapter 5

Linked Lists

© 2006 Pearson Addison-Wesley. All rights reserved 5A-1

Preliminaries

* Options for implementing an ADT
— Array
* Has a fixed size
» Data must be shifted during insertions and deletions
— Linked list
* Is able to grow in size as needed

* Does not require the shifting of items during
insertions and deletions

2006 Pearson Addison-Wesley. All rights reserved

Object References

e A reference variable
— Contains the location of an object
— Example
Integer intRef; // set to null
intRef = new Integer(5);

// set to point to Integer
object

— As adata field of a class
e Has the default value null

— A local reference variable in a method
¢ Does not have a default value

2006 Pearson Addison-Wesley. All rights reserved

Object References

[znteger (int value) |
AN

[int compareTo(integer value)
1

data field
[~]

[int intvalue() |

Figure 5-2
A reference to an

Integer object Integer object

(a) This view shows the data members
and methods for the object

Reference intRef

Integer object

(b) This view only shows the data
members for simplicity. This
is the view used throughout

Reference intRef the text

2006 Pearson Addison-Wesley. Al rights reserved 5A4

Object References

* When one reference variable is assigned to
another reference variable, both references then
refer to the same object

Integer p, qg;
p = new Integer(6);
qa = ps

* A reference variable that no longer references any
object is marked for garbage collection

2006 Pearson Addison-Wesley. All rights reserved

Object References

(a) Integer p; .
Integer g; ! ! Figure 5-3a-d
a) Declaring reference
(b) p = new Integer(5); B variables; b) allocating an
P

object; c) allocating another
object, with the dereferenced
object marked for garbage
collection

() p = new Integer(6);

2006 Pearson Addison-Wesley. Al rights reserved AS

Object References

() g = new Integer(9); E—E
Figure 5-3e-g
e) allocating an object; f)
assigning nullto a
reference variable; g)

P
a
assigning a reference with
® b = nuil; v] g
P
a

a null value

@ a = p; |Z

L =

2006 Pearson Addison-Wesley. Al rights reserved 5A7

Object References

* An array of objects
— Is actually an array of references to the objects
— Example
Integer[] scores = new Integer[30];

— Requires that you instantiate a new Integer for each
position in the array

scores[0] = new Integer(7);

scores[1l] = new Integer(9); // and so on ..

2006 Pearson Addison-Wesley. Al rights reserved 5A8

Object References

* Equality operators (== and !=)
— Compare the values of the reference variables, not the
objects that they reference

* equals method
— Compares objects field by field

* When an object is passed to a method as an
argument, the reference to the object is copied to
the method’s formal parameter

» Reference-based ADT implementations and data
structures use Java references

2006 Pears ley. All rights reserved 5A9

Resizable Arrays

* The number of references in a Java array is of
fixed size
* Resizable array

— An array that grows and shrinks as the program
executes

— An illusion that is created by using an allocate-and-
copy strategy with fixed-size arrays
* java.util.Vector class

— Uses a similar technique to implement a growable array
of objects

on Addison-Wesley. Al rights reserved 5A-10

Reference-Based Linked Lists

* Linked list
— Contains nodes that are linked to one
another
— A node

* Contains both data and a “link” to the
next item item next

* Can be implemented as an object

public class Node { Flgure 5-5
private Object item; A node
private Node next;

// constructors, accessors,
// and mutators ..
} // end class Node

2006 Pearson Addison-Wesley. Al rights reserved 5A-11

Reference-Based Linked Lists

* Using the Node class
Node n = new Node (new Integer(6));
Node first = new Node (new Integer(9), n);

Node n = new Node(new Integer(6));

K K%

n

[

first
Node first = new Node(new Integer(9), n);

Figure 5-7
Using the Node constructor to initialize a data field and a link value

2006 Pearson Addison-Wesley. Al rights reserved 5A-12

Reference-Based Linked Lists

* Data field next in the last node is set to null
* head reference variable

— References the list’s first node

— Always exists even when the list is empty

null
-l e [)]
head item next item next item next
Figure 5-8
A head reference to a linked list
© 2006 Pearson Addison-Wesley. Al rights reserved 5A-13

Reference-Based Linked Lists

* head reference variable can be assigned null without first
using new
— Following sequence results in a lost node

head = new Node(); // Don’t really need to use new here
head = null; // since we lose the new Node object here

11 1 EA

head head
head = new Node(new Integer(5)); head = null;
Figure 5-9
A lost node
© 2006 Pearson Addison-Wesley. Al rights reserved 5A-14

Preliminaries

el e e
20 45 51 76

® — Old value
|20| »—|—>|45|>—|—>|51|\|

N

Inserted item

1]

RN
HEEA

N
A AT
Deleted item
Figure 5-1

a) A linked list of integers; b) insertion; c) deletion

© 2006 Pearson Addison-Wesley. All rights reserved 5A-15

Programming with Linked Lists:
Displaying the Contents of a
Linked List

» curr reference variable
— References the current node
— Initially references the first node
» To display the data portion of the current node
System.out.println (curr.getItem());
* To advance the current position to the next node

curr = curr.getNext ();

© 2006 Pearson Addison-Wesley. All rights reserved 5A-16

Displaying the Contents of a
Linked List

After

HERNE

curr
Figure 5-10
The effect of the assignment curr = curr.getNext()
© 2006 Pearson Addison-Wesley. Al rights reserved 5A-17

Displaying the Contents of a
Linked List

» To display all the data items in a linked list

for (Node curr = head; curr != null; curr =
curr.getNext ()) {

System.out.println(curr.getItem());

} // end for

© 2006 Pearson Addison-Wesley. All rights reserved 5A-18

Deleting a Specified Node from a
Linked List

¢ To delete node N which curr references

— Set next in the node that precedes N to reference the node that
follows N

prev.setNext (curr.getNext ());

head next

prev curr

Figure 5-11

Deleting a node from a linked list

© 2006 Pearson Addison-Wesley. Al rights reserved 5A-19

Deleting a Specified Node from a
Linked List

* Deleting the first node is a special case
head = head.getNext (),

Sy

head

%

prev curr

Figure 5-12
Deleting the first node

© 2006 Pearson Addison-Wesley. Al rights reserved 5A-20

Deleting a Specified Node from a
Linked List

* To return a node that is no longer needed to the
system
curr.setNext (null) ;
curr = null;
* Three steps to delete a node from a linked list
— Locate the node that you want to delete

— Disconnect this node from the linked list by changing
references

— Return the node to the system

© 2006 Pearson Addison-Wesley. Al rights reserved 5A21

Inserting a Node into a Specified
Position of a Linked List

¢ To create a node for the new item
newNode = new Node (item) ;

¢ To insert a node between two nodes
newNode.setNext (curr) ;
prev.setNext (newNode) ;

Figure 5-13 newNode

Inserting a new node into a linked list
© 2006 Pearson Addison-Wesley. All rights reserved 5A-22

Inserting a Node into a Specified
Position of a Linked List

¢ To insert a node at the beginning of a linked list
newNode.setNext (head) ;
head = newNode;

newNode
Figure 5-14

Inserting at the beginning of a linked list

© 2006 Pearson Addison-Wesley. Al rights reserved 5A-23

Inserting a Node into a Specified
Position of a Linked List

* Inserting at the end of a linked list is not a special case if
currisnull
newNode.setNext (curr) ;
prev.setNext (newNode) ;

Formerly null

Figure 5-15

. | % I | 100 I/*/ | — |/| Inserting at the end of
a linked list

prev newNode

A

curr

© 2006 Pearson Addison-Wesley. Al rights reserved 5A-24

Inserting a Node into a Specified
Position of a Linked List

» Three steps to insert a new node into a linked list
— Determine the point of insertion
— Create a new node and store the new data in it

— Connect the new node to the linked list by changing
references

© 2006 Pearson Addison-Wesley. Al rights reserved 5A-25

Determining curr and prev

* Determining the point of insertion or deletion for a
sorted linked list of objects

for (prev = null, curr = head;
(curr !'= null) &&
(newValue.compareTo (curr.getItem()) > 0);
prev = curr, curr = curr.getNext()) {

} // end for

© 2006 Pearson Addison-Wesley. Al rights reserved 5 A

