
© 2006 Pearson Addison-Wesley. All rights reserved 5 A-1

 Chapter 5

 Linked Lists

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-2

Preliminaries

• Options for implementing an ADT

– Array

• Has a fixed size

• Data must be shifted during insertions and deletions

– Linked list

• Is able to grow in size as needed

• Does not require the shifting of items during

insertions and deletions

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-3

Object References

• A reference variable

– Contains the location of an object

– Example

Integer intRef; // set to null

intRef = new Integer(5);

 // set to point to Integer
object

– As a data field of a class

• Has the default value null

– A local reference variable in a method

• Does not have a default value

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-4

Object References

Figure 5-2Figure 5-2

A reference to an

Integer object

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-5

Object References

• When one reference variable is assigned to

another reference variable, both references then

refer to the same object

Integer p, q;

p = new Integer(6);

q = p;

• A reference variable that no longer references any

object is marked for garbage collection

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-6

Object References

Figure 5-3a-dFigure 5-3a-d

a) Declaring reference

variables; b) allocating an

object; c) allocating another

object, with the dereferenced

object marked for garbage

collection

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-7

Object References

Figure 5-3e-gFigure 5-3e-g

e) allocating an object; f)

assigning null to a

reference variable; g)

assigning a reference with

a null value

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-8

Object References

• An array of objects

– Is actually an array of references to the objects

– Example

Integer[] scores = new Integer[30];

– Requires that you instantiate a new Integer for each

position in the array

scores[0] = new Integer(7);

scores[1] = new Integer(9); // and so on …

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-9

Object References

• Equality operators (== and !=)

– Compare the values of the reference variables, not the
objects that they reference

• equals method

– Compares objects field by field

• When an object is passed to a method as an
argument, the reference to the object is copied to
the method’s formal parameter

• Reference-based ADT implementations and data
structures use Java references

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-10

Resizable Arrays

• The number of references in a Java array is of
fixed size

• Resizable array

– An array that grows and shrinks as the program
executes

– An illusion that is created by using an allocate-and-
copy strategy with fixed-size arrays

• java.util.Vector class

– Uses a similar technique to implement a growable array
of objects

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-11

Reference-Based Linked Lists

• Linked list

– Contains nodes that are linked to one
another

– A node

• Contains both data and a “link” to the
next item

• Can be implemented as an object

public class Node {

 private Object item;

 private Node next;

 // constructors, accessors,

 // and mutators …

} // end class Node

Figure 5-5Figure 5-5

A node

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-12

Reference-Based Linked Lists

• Using the Node class

Node n = new Node (new Integer(6));

Node first = new Node (new Integer(9), n);

Figure 5-7Figure 5-7

Using the Node constructor to initialize a data field and a link value

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-13

Reference-Based Linked Lists

• Data field next in the last node is set to null

• head reference variable

– References the list’s first node

– Always exists even when the list is empty

Figure 5-8Figure 5-8

A head reference to a linked list

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-14

Reference-Based Linked Lists

• head reference variable can be assigned null without first

using new

– Following sequence results in a lost node

head = new Node(); // Don’t really need to use new here

head = null; // since we lose the new Node object here

Figure 5-9Figure 5-9

A lost node

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-15

Preliminaries

Figure 5-1Figure 5-1

a) A linked list of integers; b) insertion; c) deletion

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-16

Programming with Linked Lists:

Displaying the Contents of a

Linked List

• curr reference variable

– References the current node

– Initially references the first node

• To display the data portion of the current node

System.out.println(curr.getItem());

• To advance the current position to the next node

curr = curr.getNext();

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-17

Displaying the Contents of a

Linked List

Figure 5-10Figure 5-10

The effect of the assignment curr = curr.getNext()

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-18

Displaying the Contents of a

Linked List

• To display all the data items in a linked list
for (Node curr = head; curr != null; curr =

 curr.getNext()) {

System.out.println(curr.getItem());

} // end for

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-19

Deleting a Specified Node from a

Linked List

• To delete node N which curr references

– Set next in the node that precedes N to reference the node that
follows N

prev.setNext(curr.getNext());

Figure 5-11Figure 5-11

Deleting a node from a linked list

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-20

Deleting a Specified Node from a

Linked List

• Deleting the first node is a special case

head = head.getNext();

Figure 5-12Figure 5-12

Deleting the first node

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-21

Deleting a Specified Node from a

Linked List

• To return a node that is no longer needed to the

system

curr.setNext(null);

curr = null;

• Three steps to delete a node from a linked list

– Locate the node that you want to delete

– Disconnect this node from the linked list by changing

references

– Return the node to the system

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-22

Inserting a Node into a Specified

Position of a Linked List

• To create a node for the new item

newNode = new Node(item);

• To insert a node between two nodes

newNode.setNext(curr);

prev.setNext(newNode);

Figure 5-13Figure 5-13

Inserting a new node into a linked list

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-23

Inserting a Node into a Specified

Position of a Linked List

• To insert a node at the beginning of a linked list

newNode.setNext(head);

head = newNode;

Figure 5-14Figure 5-14

Inserting at the beginning of a linked list

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-24

Inserting a Node into a Specified

Position of a Linked List

• Inserting at the end of a linked list is not a special case if
curr is null

newNode.setNext(curr);

prev.setNext(newNode);

Figure 5-15Figure 5-15

Inserting at the end of

a linked list

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-25

Inserting a Node into a Specified

Position of a Linked List

• Three steps to insert a new node into a linked list

– Determine the point of insertion

– Create a new node and store the new data in it

– Connect the new node to the linked list by changing

references

© 2006 Pearson Addison-Wesley. All rights reserved 5 A-26

Determining curr and prev

• Determining the point of insertion or deletion for a

sorted linked list of objects
for (prev = null, curr = head;

 (curr != null) &&

 (newValue.compareTo(curr.getItem()) > 0);

 prev = curr, curr = curr.getNext()) {

} // end for

