Chapter 5

Linked Lists
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Preliminaries

* Options for implementing an ADT
— Array
* Has a fixed size
» Data must be shifted during insertions and deletions
— Linked list
* Is able to grow in size as needed

* Does not require the shifting of items during
insertions and deletions
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Object References

e A reference variable
—  Contains the location of an object
—  Example
Integer intRef; // set to null
intRef = new Integer(5);

// set to point to Integer
object

— As adata field of a class
e Has the default value null

— A local reference variable in a method
¢ Does not have a default value
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Object References
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members for simplicity. This
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Object References

* When one reference variable is assigned to
another reference variable, both references then
refer to the same object

Integer p, qg;
p = new Integer(6);
qa = ps

* A reference variable that no longer references any
object is marked for garbage collection
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Object References

(a) Integer p; .
Integer g; ! ! Figure 5-3a-d
a) Declaring reference
(b) p = new Integer(5); B variables; b) allocating an
P

object; c) allocating another
object, with the dereferenced
object marked for garbage
collection

() p = new Integer(6);
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Object References

() g = new Integer(9); E—E
Figure 5-3e-g
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Object References

* An array of objects
— Is actually an array of references to the objects
— Example
Integer[] scores = new Integer[30];

— Requires that you instantiate a new Integer for each
position in the array

scores[0] = new Integer(7);

scores[1l] = new Integer(9); // and so on ..
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Object References

* Equality operators (== and !=)
— Compare the values of the reference variables, not the
objects that they reference

* equals method
— Compares objects field by field

* When an object is passed to a method as an
argument, the reference to the object is copied to
the method’s formal parameter

» Reference-based ADT implementations and data
structures use Java references
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Resizable Arrays

* The number of references in a Java array is of
fixed size
* Resizable array

— An array that grows and shrinks as the program
executes

— An illusion that is created by using an allocate-and-
copy strategy with fixed-size arrays
* java.util.Vector class

— Uses a similar technique to implement a growable array
of objects
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Reference-Based Linked Lists

* Linked list
— Contains nodes that are linked to one
another
— A node

* Contains both data and a “link” to the
next item item next

* Can be implemented as an object

public class Node { Flgure 5-5
private Object item; A node
private Node next;

// constructors, accessors,
// and mutators ..
} // end class Node

2006 Pearson Addison-Wesley. Al rights reserved 5A-11

Reference-Based Linked Lists

* Using the Node class
Node n = new Node (new Integer(6));
Node first = new Node (new Integer(9), n);

Node n = new Node(new Integer(6));

K K%

n

[

first
Node first = new Node(new Integer(9), n);

Figure 5-7
Using the Node constructor to initialize a data field and a link value

2006 Pearson Addison-Wesley. Al rights reserved 5A-12




Reference-Based Linked Lists

* Data field next in the last node is set to null
* head reference variable

— References the list’s first node

— Always exists even when the list is empty

null
-l e [ )]
head item next item next item next
Figure 5-8
A head reference to a linked list
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Reference-Based Linked Lists

* head reference variable can be assigned null without first
using new
— Following sequence results in a lost node

head = new Node(); // Don’t really need to use new here
head = null; // since we lose the new Node object here

11 1 EA

head head
head = new Node(new Integer(5)); head = null;
Figure 5-9
A lost node
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Preliminaries
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Figure 5-1

a) A linked list of integers; b) insertion; c) deletion
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Programming with Linked Lists:
Displaying the Contents of a
Linked List

» curr reference variable
— References the current node
— Initially references the first node
» To display the data portion of the current node
System.out.println (curr.getItem());
* To advance the current position to the next node

curr = curr.getNext ();
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Displaying the Contents of a
Linked List

After

HERNE

curr
Figure 5-10
The effect of the assignment curr = curr.getNext( )
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Displaying the Contents of a
Linked List

» To display all the data items in a linked list

for (Node curr = head; curr != null; curr =
curr.getNext ()) {

System.out.println(curr.getItem());

} // end for
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Deleting a Specified Node from a
Linked List

¢ To delete node N which curr references

— Set next in the node that precedes N to reference the node that
follows N

prev.setNext (curr.getNext ());

head next

prev curr

Figure 5-11

Deleting a node from a linked list

© 2006 Pearson Addison-Wesley. Al rights reserved 5A-19

Deleting a Specified Node from a
Linked List

* Deleting the first node is a special case
head = head.getNext (),

Sy

head

%

prev curr

Figure 5-12
Deleting the first node
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Deleting a Specified Node from a
Linked List

* To return a node that is no longer needed to the
system
curr.setNext (null) ;
curr = null;
* Three steps to delete a node from a linked list
— Locate the node that you want to delete

— Disconnect this node from the linked list by changing
references

— Return the node to the system
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Inserting a Node into a Specified
Position of a Linked List

¢ To create a node for the new item
newNode = new Node (item) ;

¢ To insert a node between two nodes
newNode.setNext (curr) ;
prev.setNext (newNode) ;

Figure 5-13 newNode

Inserting a new node into a linked list
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Inserting a Node into a Specified
Position of a Linked List

¢ To insert a node at the beginning of a linked list
newNode.setNext (head) ;
head = newNode;

newNode
Figure 5-14

Inserting at the beginning of a linked list
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Inserting a Node into a Specified
Position of a Linked List

* Inserting at the end of a linked list is not a special case if
currisnull
newNode.setNext (curr) ;
prev.setNext (newNode) ;

Formerly null

Figure 5-15
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Inserting a Node into a Specified
Position of a Linked List

» Three steps to insert a new node into a linked list
— Determine the point of insertion
— Create a new node and store the new data in it

— Connect the new node to the linked list by changing
references
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Determining curr and prev

* Determining the point of insertion or deletion for a
sorted linked list of objects

for (prev = null, curr = head;
(curr !'= null) &&
(newValue.compareTo (curr.getItem()) > 0);
prev = curr, curr = curr.getNext() ) {

} // end for
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