
 Linking Objects Together

• References are particularly important in computer science
because they make it possible to represent the relationship
among objects by linking them together in various ways.

 link

 data

• In a linked list, each object in a sequence contains a reference
to the one that follows it:

 link

 data

 link

 data

 nulllink

 data

• Java marks the end of linked list using the constant null,
which signifies a reference that does not actually point to an
actual object.

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-2

 The Beacons of Gondor

Minas Tirith Amon Dîn Eilenach Nardol Erelas Min-Rimmon Calenhad Halifirien Rohan

For answer Gandalf cried aloud to his horse. “On, Shadowfax!
We must hasten. Time is short. See! The beacons of Gondor are
alight, calling for aid. War is kindled. See, there is the fire on
Amon Dîn, and flame on Eilenach; and there they go speeding
west: Nardol, Erelas, Min-Rimmon, Calenhad, and the Halifirien
on the borders of Rohan.”

—J. R. R. Tolkien, The Return of the King, 1955

In a scene that was brilliantly captured in Peter Jackson’s film
adaptation of The Return of the King, Rohan is alerted to the
danger to Gondor by a succession of signal fires moving from
mountain top to mountain top. This scene is a perfect illustration
of the idea of message passing in a linked list.

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-3

 Message Passing in Linked Structures
public class SignalTower {

/* Constructs a new signal tower */
 public SignalTower(String name,
 SignalTower link) {
 towerName = name;
 nextTower = link;
 }

/*
 * Signals this tower and passes the
 * message along to the next one.
 */
 public void signal() {
 lightCurrentTower();
 if (nextTower != null) {
 nextTower.signal();
 }
 }

/* Marks this tower as lit */
 public void lightCurrentTower() {
 . . . code to draw a fire on this tower . . .
 }

/* Private instance variables */
 private String towerName;
 private SignalTower nextTower;
}

To represent this message-passing
image, you might use a definition
such as the one shown on the right.

Minas Tirith

Amon Dîn

Eilenach

Nardol

Erelas

Min-Rimmon

Calenhad

Halifirien

Rohan

null

You can then initialize a chain of
SignalTower objects, like this:

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-4

A Reference-Based

Implementation of the ADT List

• A reference-based implementation of the ADT list

– Does not shift items during insertions and deletions

– Does not impose a fixed maximum length on the list

Figure 5-18Figure 5-18

A reference-based implementation of the ADT list

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-5

A Reference-Based

Implementation of the ADT List

• Default constructor

– Initializes the data fields numItems and head

• List operations

– Public methods

• isEmpty

• size

• add

• remove

• get

• removeAll

– Private method

• find
© 2006 Pearson Addison-Wesley. All rights reserved 5 B-6

Comparing Array-Based and

Referenced-Based

Implementations
• Size

– Array-based

• Fixed size

– Issues

» Can you predict the maximum number of items in the

ADT?

» Will an array waste storage?

– Resizable array

» Increasing the size of a resizable array can waste

storage and time

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-7

Comparing Array-Based and

Referenced-Based

Implementations

• Size (Continued)

– Reference-based

• Do not have a fixed size

– Do not need to predict the maximum size of the list

– Will not waste storage

• Storage requirements

– Array-based

• Requires less memory than a reference-based implementation

– There is no need to store explicitly information about where to

find the next data item

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-8

Comparing Array-Based and

Referenced-Based

Implementations
• Storage requirements (Continued)

– Reference-based

• Requires more storage

– An item explicitly references the next item in the list

• Access time

– Array-based

• Constant access time

– Reference-based

• The time to access the ith node depends on i

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-9

Comparing Array-Based and

Referenced-Based

Implementations

• Insertion and deletions

– Array-based

• Require you to shift the data

– Reference-based

• Do not require you to shift the data

• Require a list traversal

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-10

Passing a Linked List to a

Method

• A method with access to a linked list’s head reference has
access to the entire list

• When head is an actual argument to a method, its value is
copied into the corresponding formal parameter

Figure 5-19Figure 5-19

A head reference as an argument

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-11

Processing Linked Lists

Recursively

• Traversal

– Recursive strategy to display a list

Write the first node of the list

Write the list minus its first node

– Recursive strategies to display a list backward

• writeListBackward strategy

Write the last node of the list

Write the list minus its last node backward

• writeListBackward2 strategy

Write the list minus its first node backward

Write the first node of the list

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-12

Processing Linked Lists

Recursively

• Insertion

– Recursive view of a sorted linked list

The linked list that head references is a sorted linked list if

head is null (the empty list is a sorted linked list)

or

head.getNext() is null (a list with a single node is a

sorted linked list)

or

head.getItem() < head.getNext().getItem(),

and head.getNext() references a sorted linked list

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-13

Variations of the Linked List:

Tail References

• tail references

– Remembers where the end of the linked list is

– To add a node to the end of a linked list

tail.setNext(new Node(request, null));

Figure 5-22Figure 5-22

A linked list with head and tail references

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-14

Circular Linked List

• Last node references the first node

• Every node has a successor; check if getNext().equals(list)

to determine when entire list is traversed

Figure 5-23Figure 5-23

A circular linked list

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-15

Circular Linked List

Figure 5-24Figure 5-24

A circular linked list with an external reference to the last node

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-16

Dummy Head Nodes

• Dummy head node

– Always present, even when the linked list is empty

– Insertion and deletion algorithms initialize prev to
reference the dummy head node, rather than null

Figure 5-25Figure 5-25

A dummy head node

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-17

Doubly Linked List

• Each node references both its predecessor and its successor

• Dummy head nodes are useful in doubly linked lists

Figure 5-26Figure 5-26

A doubly linked list

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-18

Doubly Linked List

• Circular doubly linked list

– prev reference of the dummy head node references the

last node

– next reference of the last node references the dummy

head node

– Eliminates special cases for insertions and deletions

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-19

Doubly Linked List

Figure 5-27Figure 5-27

a) A circular doubly linked list with a dummy head node; b) an empty list with a

dummy head node

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-20

Doubly Linked List

• To delete the node that curr references
curr.getPrev().setNext(curr.getNext());

curr.getNext().setPrev(curr.getPrev());

Figure 5-28Figure 5-28

Reference changes for deletion

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-21

Doubly Linked List

• To insert a new node that newNode references before the
node referenced by curr

newNode.setNext(curr);

newNode.setPrev(curr.getPrev());

curr.setPrev(newNode);

newNode.getPrev().setNext(newNode);

Figure 5-29Figure 5-29

Reference changes

for insertion

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-22

Application: Maintaining an

Inventory

• Stages of the problem-solving process

– Design of a solution

– Implementation of the solution

– Final set of refinements to the program

• Operations on the inventory

– List the inventory in alphabetical order by title (L
command)

– Find the inventory item associated with title (I, M, D,
O, and S commands)

– Replace the inventory item associated with a title (M,
D, R, and S commands)

– Insert new inventory items (A and D commands)

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-23

The Java Collections Framework

• Implements many of the more commonly used
ADTs

• Collections framework

– Unified architecture for representing and manipulating

collections

– Includes

• Interfaces

• Implementations

• Algorithms

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-24

Generics

• JCF relies heavily on Java generics

• Generics

– Develop classes and interfaces and defer certain data-
type information

• Until you are actually ready to use the class or interface

• Definition of the class or interface is followed by
<E>

– E represents the data type that client code will specify

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-25

Iterators

• Iterator
– Gives the ability to cycle through items in a collection

– Access next item in a collection by using iter.next()

• JCF provides two primary iterator interfaces
– java.util.Iterator

– java.util.ListIterator

• Every ADT collection in the JCF has a method to
return an iterator object

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-26

Iterators

• ListIterator methods
– void add(E o)

– boolean hasNext()

– boolean hasPrevious()

– E next()

– int nextIndex()

– E previous()

– int previousIndex()

– void remove()

– void set(E o)

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-27

The Java Collection’s Framework
List Interface

• JCF provides an interface java.util.List

• List interface supports an ordered collection
– Also known as a sequence

• Methods
– boolean add(E o)

– void add(int index, E element)

– void clear()

– boolean contains(Object o)

– boolean equals(Object o)

– E get(int index)

– int indexOf(Object o)

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-28

The Java Collection’s Framework
List Interface

• Methods (continued)
– boolean isEmpty()

– Iterator<E> iterator()

– ListIterator<E> listIterator()

– ListIterator<E> listIterator(int

index)

– E remove(int index)

– boolean remove(Object o)

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-29

The Java Collection’s Framework
List Interface

• Methods (continued)
– E set(int index, E element)

– int size()

– List<E> subList(int fromIndex, int
toIndex)

– Object[] toArray()

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-30

Summary

• Reference variables can be used to implement the

data structure known as a linked list

• Each reference in a linked list is a reference to the

next node in the list

• Algorithms for insertions and deletions in a linked

list involve

– Traversing the list from the beginning until you reach

the appropriate position

– Performing reference changes to alter the structure of

the list

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-31

Summary

• Inserting a new node at the beginning of a linked
list and deleting the first node of a linked list are
special cases

• An array-based implementation uses an implicit
ordering scheme; a reference-based
implementation uses an explicit ordering scheme

• Any element in an array can be accessed directly;
you must traverse a linked list to access a
particular node

• Items can be inserted into and deleted from a
reference-based linked list without shifting data

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-32

Summary

• The new operator can be used to allocate memory
dynamically for both an array and a linked list

– The size of a linked list can be increased one node at a
time more efficiently than that of an array

• A binary search of a linked list is impractical

• Recursion can be used to perform operations on a
linked list

• The recursive insertion algorithm for a sorted
linked list works because each smaller linked list
is also sorted

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-33

Summary

• A tail reference can be used to facilitate locating
the end of a list

• In a circular linked list, the last node references
the first node

• Dummy head nodes eliminate the special cases for
insertion into and deletion from the beginning of a
linked list

• A head record contains global information about a
linked list

• A doubly linked list allows you to traverse the list
in either direction

© 2006 Pearson Addison-Wesley. All rights reserved 5 B-34

 Summary

• Generic class or interface

– Enables you to defer the choice of certain data-type

information until its use

• Java Collections Framework

– Contains interfaces, implementations, and algorithms

for many common ADTs

• Collection

– Object that holds other objects

– Iterator cycles through its contents

