CS 145 – Foundations of Computer Science

Professor Eric Aaron

Lecture – W F 1:30pm
 Lab – F 3:30pm

Lecture Meeting Location: SP 105
 Lab Meeting Location: SP 309

Business

• HW2-Lookahead out
 – Full HW2 expected out today (or tomorrow), due Feb. 22

• Please read Ch.2.1, 2.2.2, 2.3.1, 2.4, 2.5, and 2.7.1 in your textbook
 – You can skip section 2.3.2, but people interested in databases might want to read it anyway

(note: graph images in this lecture are from the textbook “Artificial Intelligence: A Modern Approach” by Stuart Russell and Peter Norvig)
Exercise

• Claim: For any sets A and B, \((A \cap B) \subseteq (A \cup B)\).
 – Prove it, or give a counterexample.

Ordered Pairs and n-tuples

• By design / definition, sets are good for asking questions of membership, but not for questions of relative ordering of elements
• A different structure, an n-tuple, represents elements and their ordering

• Definition: An ordered pair is a pair of elements expressed in parenthesis—e.g., \((0,0)\), \((9,17)\), (Jon Stewart, Stephen Colbert)
 – Order matters, so \((17, 9)\) is not the same as \((9, 17)\)
 – Similarly, order matters, so \((0,0)\) does not contain redundant elements—the 0s are distinct from each other, by position
 – How could we state the criterion for identity for ordered pairs?
• This generalizes to n-tuples with more than 2 elements
 – E.g., \((0,0),(3,4,5)\) are both 3-tuples; \((72, 86, 94, 86, 76, 66, 72)\) is a 7-tuple
Set Product
(Cartesian Product)

- Given sets A and B, ordered pairs can represent elements from those sets and which set each element came from
- Definition: The set product (or Cartesian product) of sets A and B is
 \[A \times B = \{ (a, b) \mid a \in A \text{ and } b \in B \} \]
 - That is, it’s the set of all pairs s.t. the first element is in A and the second element is in B
 - Note: This generalizes to more than two sets. \(A_1 \times A_2 \times \cdots \times A_n \) is all n-tuples s.t. the first element is from \(A_1 \), the second from \(A_2 \), …, and the n’th from \(A_n \)
- Exercises
 - What’s \(\{0, 1\} \times \{1, 2, 3\} \)?
 - What’s \(\{1,2,3,4,5,6\} \times \{1,2,3,4,5,6\} \)?
 - Let \(A = \{2\} \times \{1, \ldots, 28\} \), \(B = \{4,6,9,11\} \times \{1, \ldots, 30\} \), and \(C = \{1,3,5,7,8,10,12\} \times \{1, \ldots, 31\} \).
 What is \(A \cup B \cup C \)?

“Cogito ergo product”? Are you sure you don’t mean Cartesian sum?
Yes, I’m sure.

Binary Relations

- A relation, intuitively enough, expresses the relation between elements of various sets. More formally…
- For sets A and B, a binary relation from A to B (or over A x B) is a subset of A x B. (That's the Cartesian product of A and B)
 - i.e., it is a set of ordered pairs of the form (a,b) where a ∈ A and b ∈ B
 - … thus, it relates elements of A to elements of B
 - Note: If a relation R is a subset of A x A, we say it is a relation over A
- More generally, for sets \(A_1, \ldots, A_n \), an n-place relation over \(A_1, \ldots, A_n \) is a subset of the set product \(A_1 \times \cdots \times A_n \)
Directed Graphs

- One way of representing a binary relation is a directed graph, which indicates ordered relations between elements.

- A directed graph G is a pair (V,E) where V is a finite set of vertices (singular: vertex), and E is a binary relation on $V \times V$.
 - E is called the edges (or edge set) of graph G.

- Exercise: For graph (a), what are the sets V and E?

Graphs, and Inverse of a Relation

- Given a relation R, the inverse R^{-1} of R is the set of all ordered pairs (b,a) s.t. $(a,b) \in R$.
 - You can think of the inverse as reversing the direction of R.
 - Your textbook calls this the converse of R; I’m more familiar with calling it the inverse.

- Questions:
 - Are R^{-1} and R disjoint?
 - What’s the inverse of the relation in (c), below? (express it as ordered pairs, not a graph)
Properties of Relations

- Some useful properties of relations! Definitions:
 - A relation R over a set A is **reflexive** if for all $a \in A$, $(a, a) \in R$
 - What would a reflexive relation be over the set $\{1, 2, 3\}$?
 - (If it’s clear in context what the set A is, we might simply say that the relation R is reflexive, in that context)
 - A relation R is **symmetric** if whenever $(a, b) \in R$, $(b, a) \in R$
 - A relation R is **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$

- Exercise: Consider the following relations over $\{1, 2, 3, 4\}$
 - $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$
 - $R_2 = \{(1,1), (1,2), (2,1)\}$
 - $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$
 - $R_4 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$
 - Which of these are reflexive? symmetric? transitive?

More Vocabulary and Properties of Relations

- For relation R:
 - **Domain** $\text{dom}(R) = \{a \mid \exists b \text{ s.t. } (a, b) \in R\}$—that is, the domain is all elements that are the first element of a pair in R
 - **Range** $\text{range}(R) = \{b \mid \exists a \text{ s.t. } (a, b) \in R\}$—that is, the range is all elements that are the second element of a pair in R

- Recall that relations are sets of n-tuples; binary relations are sets of ordered pairs. So, applying ideas from subsets:
 - A relation R could be a **subrelation** of a relation S
 - The **empty relation** has no elements—it is the same as \emptyset

- Exercises:
 - What is $\text{dom}(A \times B)$? What is $\text{range}(A \times B)$?
 - What does it mean if relations R and S are **disjoint**? If $A = \{1, 2, 3\}$, what is an example of disjoint relations over A?
 - Consider a relation R and its inverse R^{-1}. How do $\text{dom}(R)$ and $\text{range}(R)$ relate to $\text{dom}(R^{-1})$ and $\text{range}(R^{-1})$?
Digression: Undirected Graphs

- There are also undirected graphs
- An undirected graph is a pair $G=(V,E)$ where
 - V (vertices) is a finite set, and
 - E (edges) is a set of unordered pairs on $V \times V$

- What are V and E for undirected graph (b), above?