CS 145 – Foundations of Computer Science

Professor Eric Aaron

Lecture – W F 1:30pm
Lab – F 3:30pm

Lecture Meeting Location: SP 105
Lab Meeting Location: SP 309

Business

• HW2 out, due Feb. 22
• HW1 back today

• Please read Ch.2.1, 2.2.2, 2.3.1, 2.4, 2.5, and 2.7.1 in your textbook
 – You can skip section 2.3.2, but people interested in databases might want to read it anyway
Other Properties of Relations

• Recall definitions:
 – A relation R over a set A is **reflexive** if for all $a \in A$, $(a,a) \in R$
 – A relation R is **symmetric** if whenever $(a,b) \in R$, $(b,a) \in R$
 – A relation R is **transitive** if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$

• Relations can also be described as, in some sense (be very careful!), having the opposites of those properties (note the \notin symbols!):
 – A relation R over a set A is **irreflexive** if for all $a \in A$, $(a,a) \notin R$
 – A relation R is **asymmetric** if whenever $(a,b) \in R$, $(b,a) \notin R$
 – A relation R is **intransitive** if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \notin R$

• Note that, e.g., not being reflexive is not the same as being irreflexive!

• Exercises:
 – Give a relation over $\{1,2,3\}$ that is neither reflexive nor irreflexive
 – Give a relation over $\{1,2,3\}$ that is neither symmetric nor asymmetric
 – Give a relation over $\{1,2,3\}$ that is neither transitive nor intransitive

Equivalence Relations

• Recall definitions:
 – A relation R over a set A is **reflexive** if for all $a \in A$, $(a,a) \in R$
 – A relation R is **symmetric** if whenever $(a,b) \in R$, $(b,a) \in R$
 – A relation R is **transitive** if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$

• When a relation R has all of these properties, it is called an **equivalence relation**

• If R is an equivalence relation, then it induces **equivalence classes** on the elements
 – For equivalence relation R and any element a, let C_a stand for all elements related to element a in R—that is, $C_a = \{ b | (a,b) \in R \}$
 – Then, $C_a = C_b$ exactly when $(a,b) \in R$!

• What are some equivalence relations over the natural numbers?
 – Verify all three properties. What are the equivalence classes?
 – What do the graphs of these equivalence relations look like?
Partitions

• Intuitively, what does it mean to you if something—or a collection of things—is partitioned?

• How could we write that definition in rigorous, formal notation?

Computer scientists can often do this kind of thing—studying what is meant by something and coming up with a rigorous, formal definition that fits its applications. That way, even a computer can work with that definition!

Partitions

• Intuitively, a partition of a set S is a way of breaking S into a collection of non-empty subsets S_1, S_2, \ldots, S_n such that
 – the subsets include all of S;
 – … and the subsets don’t overlap.

• Below, a partition of the set $S = \{0, 1, \ldots, 10\}$

• What’s the connection between a partition and an equivalence relation?
Partitions

More formally, a definition of a *partition*:

- Let A be a non-empty set, and let $\{B_i\}_{i \in I}$ be an indexed collection of non-empty subsets of A (I is called an index set)

- ... Then, $\{B_i\}_{i \in I}$ is a *partition* of A iff
 1. $\{B_i\}_{i \in I}$ is a pairwise-disjoint collection (do you remember this definition?)
 2. $\{B_i\}_{i \in I}$ exhausts A (see definition below)
 - Definition: We say that $\{B_i\}$ *exhausts* A iff $(\bigcup_{i \in I} B_i) = A$
 - That is, $\forall a \in A$, $\exists i \in I$ s.t. $a \in B_i$

How does this compare to our intuitive sense(s) of what it means for something to be partitioned?

Equivalence Relations and Partitions

- Equivalence relations and partitions can be viewed as different ways of expressing the same thing:
 - Every equivalence relation over A determines a partition over A
 - Every partition over A determines an equivalence relation over A
 - Thus, in some sense, they're doing the same thing!

- Claim: Every equivalence relation over A determines a partition over A
 - Proof:

- Claim: Every partition over A determines an equivalence relation over A
 - Proof: