CS 145 – Foundations of Computer Science

Professor Eric Aaron

Lecture – T R 3:10pm
Lab – M 3:10pm

Lecture Meeting Location: OH 162
Lab Meeting Location: SP 309

Business

• HW4 available from course website, due Apr. 4 / Apr. 5 (as always, see assignment sheet for exact deadlines)

• Reading: Ch.4.1-4.6
 – Our coverage of the material will be different from that in the textbook, but it’s good to see the textbook’s presentation, as well

• Reading: Prof. Hunsberger’s document “The Natural Numbers, Induction, and Numeric Recursion”
 – Posted on the Additional Notes / Readings page of the CS145 website

• Oh, and in case anyone forgot: Exam in class Thursday
 – Recall, Coaches have no information about the exam—please direct any questions about the exam to me!
A General Note about Proving Stuff

• As we’ve discussed in class, proofs are important, and understanding how to structure a proof is important

Generally Good Idea: When proving a claim about something, let the definition of that thing guide your proof.

• Example: Proof about transitivity of a relation R.
 – The definition of transitivity is of the form: For all a,b,c, if (a,b) in R and (b,c) in R then (a,c) in R
 – So, the proof might begin with considering arbitrarily chosen a,b,c (because of the *For all* in the definition)
 – Then, the proof might proceed by assuming (a,b) in R and (b,c) in R (because of the *if—then* in the definition) …

A General Note about Proving Stuff

• As we’ve discussed in class, proofs are important, and understanding how to structure a proof is important

Generally Good Idea: When proving a claim about something, let the definition of that thing guide your proof.

• Example: Proof about equality of sets S=T.
 – The definition of set equality is of the form: S=T iff For all x, x ∈ S exactly when x ∈ T
 – One way of understanding this meaning is that S = T iff S ⊆ T and T ⊆ S
 – So, the proof might begin with a proof of S ⊆ T
 – Then, the proof might proceed with a proof of T ⊆ S …
A General Note about Proving Stuff

• As we’ve discussed in class, proofs are important, and understanding how to structure a proof is important

Generally Good Idea: When proving a claim about something, let the definition of that thing guide your proof.

• Example: Proving something of the form $P \iff Q$
 – One way to understand the meaning of \iff is that $P \iff Q$ is true exactly when both $if \ P \ then \ Q \ is \ true$ and $if \ Q \ then \ P \ is \ true$
 – So, the proof might begin with a proof of $if \ P \ then \ Q$
 – Then, the proof might proceed with a proof of $if \ Q \ then \ P \ ...$

A General Note about Proving Stuff

• As we’ve discussed in class, proofs are important, and understanding how to structure a proof is important

Generally Good Idea: When proving a claim about something, let the definition of that thing guide your proof.

• For anything defined by recursion, the preferred proof technique is typically *induction*.
• This is because of the same Generally Good Idea that guides our proofs of transitivity, set equality, etc.—follow the relevant definitions!
 – (But we’ve proved things about numbers by induction… hm….)

Important Observation: When we prove something by induction, we are typically being guided to do so by an underlying recursive definition.
Recursive (or Inductive) Definition of a Set

- A recursive definition of a set S consists of three components:
 - **Base**: One or more foundational elements of S
 - **Induction**: One or more rules to construct new elements of S from existing elements of S
 - **Closure**: The condition that S consists of all and exactly the elements derived from the base elements and induction rules.
 (In the context of a definition, this is often assumed rather than explicitly stated—the fact that it is a definition means that the set is exactly the elements thus specified.)

- What are some recursively defined sets we’ve already seen, and what are their definitions?

A Recursively Defined Set: Propositional Logic Expressions

- Recall our expressions for propositional logic: **propositional letters** (i.e., variables), negations, conjunctions, etc.
- A recursive definition of the set of all propositional logic expressions:
 - **Base**: Given an initial set A of propositional letters (e.g., p, q, r, …), all elements of A are propositional logic expressions
 - **Induction**: If P, Q are propositional logic expressions, then the following are also propositional logic expressions (note that the parentheses are part of the expressions)
 * ($\neg P$)
 * ($P \land Q$)
 * ($P \lor Q$)
 * ($P \rightarrow Q$)
 * ($P \leftrightarrow Q$)
 - (implicit, when unstated) **Closure**: The set of propositional logic expressions is all and only these expressions

Two Very Important Questions:
1. Is this a good recursive definition for the set of propositional logic expressions?
2. What are the trade-offs for such a definition?
A Recursively Defined Set: Propositional Logic Expressions

- Recall our expressions for propositional logic: *propositional letters* (i.e., variables), negations, conjunctions, etc.
- A recursive definition of the set of all propositional logic expressions:
 - **Base:** Given an initial set \(A \) of propositional letters (e.g., \(p, q, r, \ldots \)), all elements of \(A \) are propositional logic expressions
 - **Induction:** If \(P, Q \) are propositional logic expressions, then the following are also propositional logic expressions (note that the parentheses are part of the expressions)
 - \((\neg P) \)
 - \((P \land Q) \)
 - \((P \lor Q) \)
 - (implicit, when unstated) **Closure:** The set of propositional logic expressions is all and only these expressions

Two Very Important Questions:

1. Is this a *better* recursive definition for the set of propositional logic expressions? (Is it equivalent to the previous one?)
2. What are the trade-offs for such a definition?

A Recursively Defined Set: The Natural Numbers

- As suggested by all of our inductive proofs about numbers, there is also a recursive definition of the natural numbers
- The *Peano axioms* are conventionally taken as a definition of the natural numbers (here, let \(N \) stand for the natural numbers):
 1. There exists a number 0 s.t. 0 ∈ \(N \)
 2. Every natural number \(n \) has a natural number successor, denoted by \(S(n) \)
 3. There is no \(n \) in \(N \) s.t. \(S(n) = 0 \)
 4. Distinct natural numbers have distinct successors: if \(a \neq b \), then \(S(a) \neq S(b) \)
 5. Let \(P \) be a property of the natural numbers such that:
 - \(P(0) \) holds
 - For every \(a \) in \(N \), if \(P(a) \) holds, then \(P(S(a)) \) holds

 If both of those conditions are true, then \(P(n) \) holds for all \(n \) in \(N \).

Axioms 1 and 2 give the recursive construction of the elements of \(N \). The other Axioms are properties of \(N \). Axiom 5 is sometimes called the Axiom of Induction.
Peano Examples

(Like, etudes?)

• The Peano axioms:
 1. There exists a number 0 s.t. 0 ∈ N
 2. Every natural number has a natural number successor, denoted by S(n)
 3. There is no n in N s.t. S(n) = 0
 4. Distinct natural numbers have distinct successors: if a ≠ b, then S(a) ≠ S(b)
 5. Let P be a property of the natural numbers such that:
 • P(0) holds
 • For every a in N, if P(a) holds, then P(S(a)) holds
 If both of those conditions are true, then P(n) holds for all n in N.

• Exercises and examples:
 – How would we write the number 2 in this notation? The number 5?
 – Could we write the number -1 in this notation?