CS 145 – Foundations of Computer Science

Professor Eric Aaron

Lecture – T R 3:10pm
Lab – M 3:10pm

Lecture Meeting Location: OH 162
Lab Meeting Location: SP 309
Business

• HW4 due Apr. 4 / Apr. 5 (as always, see assignment sheet for exact deadlines)

• Reading: Ch.4.1-4.6
 – Our coverage of the material will be different from that in the textbook, but it’s good to see the textbook’s presentation, as well

• Reading: Prof. Hunsberger’s document “The Natural Numbers, Induction, and Numeric Recursion”
 – Posted on the Additional Notes / Readings page of the CS145 website
Addition

• If the Peano axioms define the natural numbers…
 – How could we define the addition function?
 – Hint: Recursively! Because our definition of the numbers is recursive…
 – What would the base case(s) be?
 – What would the inductive case(s) be? **Note: We proved that every natural number is either 0 or S(m) for some m. How can that help us in this recursive definition?**
More Addition

• If the Peano axioms define the natural numbers…
 – How could we define the addition function?
 – Hint: Recursively! Because our definition of the numbers is recursive…

- Recall: We proved that every natural number is either 0 or S(m) for some m.

• Definition of addition:
 1. Case z=0 -- For all n in N, n + 0 = n
 2. Case z=S(m) -- For all n in N, z = S(m) for some m in N:
 \[n + S(m) = S(n + m) \]

• Let’s prove something with that definition!
 – Claim: This addition function is \textit{associative} (i.e., \(a + (b + c) = (a + b) + c \), for all \(a, b, c \) in \(N \))
 – Proof: ??
Proof: Associativity of Addition

- Definition of addition:
 1. Case $z=0$ -- For all $n \in \mathbb{N}$, $n + 0 = n$
 2. Case $z=S(m)$ -- For all $n \in \mathbb{N}$, $z = S(m)$ for some $m \in \mathbb{N}$: $n + S(m) = S(n + m)$

- Let’s prove something with that definition—associativity!
 - To prove: For all $a, b, c \in \mathbb{N}$, $a + (b + c) = (a + b) + c$
 - Proof: Prove by induction on c.
 - Let $P(c)$ be the proposition: For all $a, b \in \mathbb{N}$, $a + (b + c) = (a + b) + c$
 - Base—$c=0$.
 - $P(0)$ is the proposition: For all $a, b \in \mathbb{N}$, $a + (b + 0) = (a + b) + 0$
 - To prove: $P(0)$—for arb’ly chosen a, b, show $a + (b + 0) = (a + b) + 0$
 - Start with the left hand side: $a + (b + 0) = a + b$, because $(b + 0) = b$ (by equation 1 of the definition of addition, with b in place of n); then, $a + b = (a + b) + 0$, also by equation 1, with $(a + b)$ in place of n. Thus, $a + (b + 0) = (a + b) + 0$, completing the proof of the base case.
Proof: Associativity of Addition

- Definition of addition:
 1. Case z=0 -- For all n in N, n + 0 = n
 2. Case z=S(m) -- For all n in N, z = S(m) for some m in N: n + S(m) = S(n + m)
- Let’s prove something with that definition—associativity!
 - Inductive case—c=S(y) for some y in N. Then, for that y, assume P(y) and prove P(S(y)): For all a, b in N, a + (b + S(y)) = (a + b) + S(y).
 - Consider arbitrarily chosen a, b. Show a + (b + S(y)) = (a + b) + S(y).
 - Start with the left hand side: a + (b + S(y)) = a + S(b + y), by eqn 2 of the definition of addition, with b in place of n and y in place of m;
 - Then, a + S(b + y) = S(a + (b + y)), by eqn 2, with a in place of n and (b + y) in place of m;
 - Then, S(a + (b + y)) = S((a + b) + y), because a + (b + y) = (a + b) + y, by the inductive hypothesis; (Be sure to explicitly note where the I.H. is used!)
 - Then, S((a + b) + y) = (a + b) + S(y), by eqn 2 with (a + b) in place of n and y in place of m;
 - Thus, a + (b + S(y)) = (a + b) + S(y), completing the inductive case.
Proof: Associativity of Addition

- Definition of addition:
 1. Case \(z = 0 \) -- For all \(n \) in \(\mathbb{N} \), \(n + 0 = n \)
 2. Case \(z = S(m) \) -- For all \(n \) in \(\mathbb{N} \), \(z = S(m) \) for some \(m \) in \(\mathbb{N} \):
 \[n + S(m) = S(n + m) \]

- Let’s prove something with that definition—associativity!
 - To prove: For all \(a, b, c \) in \(\mathbb{N} \), \(a + (b + c) = (a + b) + c \)
 - Proof: Prove by induction on \(c \)
 - Let \(P(c) \) be the proposition: For all \(a, b \) in \(\mathbb{N} \), \(a + (b + c) = (a + b) + c \)
 - Base—\(c = 0 \). Prove \(P(0) \).
 - Inductive case—\(c = S(y) \) for some \(y \). Prove \(P(S(y)) \).
 - Both cases are proved, on the previous slides. Therefore, the claim holds
 for all numbers \(c \) in \(\mathbb{N} \), by induction. (Specifically, by the Axiom of
 induction!)
Theorem: George

- Definition of addition:
 1. Case $z=0$: For all n in \mathbb{N}, $n + 0 = n$
 2. Case $z=S(m)$: For all n in \mathbb{N}, $z = S(m)$ for some m in \mathbb{N}: $n + S(m) = S(n + m)$

- Theorem: George—$x + 0 = 0 + x$ for all natural numbers x

- Proof: Let $P(n)$ be the proposition $n + 0 = 0 + n$
 - To prove: $P(n)$ holds for all numbers n in \mathbb{N}. Proof by induction on n.

- Base case: $P(0)$. To prove …

- Inductive case: Assume for (arbitrarily chosen) k that $P(k)$ holds. Then, prove $P(S(k))$. To prove…

What is the Inductive Hypothesis, in this case?