CS 145 – Foundations of Computer Science

Professor Eric Aaron

Lecture – T R 3:10pm
Lab – M 3:10pm

Lecture Meeting Location: OH 162
Lab Meeting Location: SP 309

Business

• HW5 due April 16 / April 17 (as always, see assignment sheet for exact deadlines)
• Exams back today

• Reading: Ch.4.1-4.6
 – Our coverage of the material will be different from that in the textbook, but it’s good to see the textbook’s presentation, as well
• (Next reading: Ch. 5)

• Document on structural induction available from course website (follow the Additional Notes link)
Proving Statements about Recursively Defined Sets

• A related kind of induction is called *structural induction*, which can be used to prove claims about all items constructed by a recursive definition.

 • To prove property \(P \) holds for all elements of a recursively defined set:
 - Base case(s): Show that \(P \) holds for every element in the basis for the recursive definition.
 - Inductive case(s): Show that every *constructor* in the definition preserves property \(P \).

• Recall the definition of *transitive closure*:
 - \(R^0 = R \);
 - \(R^{n+1} = R_n \cup \{(a,c) \mid \exists x \text{ s.t. } (a,x) \in R_n \text{ and } (x,c) \in R\} \);

• Claim: In the above definition, \(R \) is a subset of \(R_i \) for all \(i \). Prove by structural induction.

Proving Statements about Recursively Defined Sets

• A related kind of induction is called *structural induction*
 - Base case(s): Show that \(P \) holds for every element in the basis for the recursive definition.
 - Inductive case(s): Show that every *constructor* in the definition preserves property \(P \).

• Recall our recursive definition of propositional logic expressions
 - Base: Given an initial set \(A \) of propositional letters (e.g., \(p, q, r, \ldots \)), all elements of \(A \) are propositional logic expressions
 - Induction: If \(P, Q \) are propositional logic expressions, then the following are also propositional logic expressions (note that the parentheses are part of the expressions)
 * \(\neg P \); \(P \land Q \); \(P \lor Q \); \(P \rightarrow Q \); \(P \leftrightarrow Q \)

 (Note: 5 constructors)

• Claim: All propositional logic expressions contain an even number of parentheses. (We consider 0 to be an even number.) Prove by structural induction.