Assignment 4

Due October 7, 11:59 p.m.

Problem 1

As in Assignment 3, a relation R over a set A is called Euclidean iff whenever (a, b) and (a, c) are in R, then so is (b, c).

a. What does the Euclidean property say when $a = c$?

b. Give an example of a relation over the set $\{1, 2, 3\}$ that is Euclidean but not transitive.

c. Prove that if a relation R over some set A is both Euclidean and reflexive, then it must be symmetric. (Hint: See (a).)

Problem 2

If $f : A \rightarrow B$ and $g : B \rightarrow C$ are both injective functions, then their composition, $g \circ f : A \rightarrow C$ must also be injective. However, if g is not injective, then $g \circ f$ might not be injective either – even if f is. Give an example that demonstrates this possibility. (Use a small set A.)