One of the best ways to improve your proof writing is to do some proof reading. In doing so, you’ll get a better perspective on why certain stylistic conventions make proofs easier to understand – and why not following them can make proofs harder to read.

You’ll also get practice tracing through mathematical arguments, which will help expand your repertoire of techniques and give you a better sense of what details to focus on in your reasoning.

For each of the following proofs,

a. **Critique its style.** Go through the provided Guide to Proofs. Identify where the proof violates these guidelines.

b. **Critique its reasoning.** Are the arguments given by these proofs correct? If there are reasoning errors, point them out and demonstrate why they’re incorrect.

c. **Correct the proof.** Using your list of issues, do one of the following:

- If the reasoning is correct but the proof has poor style, simply rewrite the proof to improve its style, keeping the core argument intact.
- If the reasoning is incorrect but the statement being proved is still true, write a new proof of the theorem. Try to modify the original argument as little as possible.
- If the reasoning is incorrect and the statement being proved isn't even true to begin with, briefly explain why the statement isn't true, though no formal disproof is required.

\[^1\text{Any resemblance to an actual party is purely coincidental. Sorry.}\]
Proof 1

THEOREM The sum of an even integer and an odd integer is odd.

PROOF This proof will talk about adding together different kinds of numbers. An even integer is an integer that can be written as $2k$ for some integer k. Therefore, $m = 2k$. Similarly, an odd integer is one that can be written as $2k + 1$ for some integer k. So $n = 2k + 1$. $m + n = 2k + 2k + 1 = 4k + 1$. Therefore $m + n$ is odd. ■
Proof 2

Theorem Every natural number is odd.

Proof Assume for the sake of contradiction that every natural number is even. In particular, that would mean that 137 is even. Since $137 = 2 \cdot 68 + 1$ and 68 is a natural number, we see that 137 is odd. We know that there is no integer n where n is both odd and even. However, $n = 137$ is both even and odd. This is impossible. We've reached a contradiction, so our assumption must have been wrong. Therefore, every natural number is odd. ■
Proof 3

Theorem If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof Since $A \subseteq B$, it means that some group of the elements of B is the set A. Since $A \subseteq C$, it means that some group of the elements of C is the set A. Therefore, some group of the elements of $B \cap C$ is the set A, so $A \subseteq B \cap C$. \blacksquare
Proof 4

Theorem If $A \subset B$ and $A \subset C$, then $A \subset B \cap C$.

Proof Since $A \subset B$, it means that some group of the elements of B is the set A, and there are some other elements of B. Since $A \subset C$, it means that some group of the elements of C is the set A, and there are some other elements of C. Therefore, some group of the elements of $B \cap C$ is the set A, and there are some other elements of $B \cap C$, so $A \subset B \cap C$. \blacksquare