
CMPU 240 ⋅ Spring 2026

Assignment 2

Submissions due: 10 February, 1:30 p.m.
Corrections due: 12 February, 1:30 p.m.

Exercise 1

It may be surprising how important the empty string and the empty
language are in language theory.1 This exercisemakes sure you have 1 Consider what mathemat-

ics would be like without the
number 0!

a clear understanding of these concepts.

a. Is there any language L where ε ∈ L? If so, give an example of one.
If not, explain why not.

b. Is there any language L where ε ∉ L? If so, give an example of one.
If not, explain why not.

c. Is there any language L where ε ⊆ L? If so, give an example of one.
If not, explain why not.

d. Does ∅ = ε? Briefly explain your answer.

e. Does ∅ = {ε}? Briefly explain your answer.



2

Exercise 2

Recall that the formal mathematical definition of a deterministic
finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0,F), where:

• Q is a finite set whose elements are called states;

• Σ is a non-empty finite set whose elements are called characters;

• δ ∶ Q × Σ → Q is the transition function, described below;

• q0 ∈ Q is the start state;

• F ⊆ Q is the set of accept states.

To define a machine using a
5-tuple, use this template:

“Let D = (Q,Σ, δ, q0,F),
where Q = …, Σ = …, etc.”

For this problem, please
don’t define the transition
function δ with a diagram or
a table. Instead, define it like
a mathematical function.

When we’ve drawn DFAs, we’ve represented the transitions by ar-
rows labeled with characters. However, in this formal definition, the
transition function δ is what specifies these transitions. Specifically,
for any state q ∈ Q and any symbol α ∈ Σ, the transition from state q
on symbol α is given by δ(q,α).

This question explores some properties of this definition:

a. Is it possible for a DFA to have no states? If so, define a DFA with no
states as a 5-tuple and explain why it meets the above requirements.
If not, explain why this is not possible.



3

b. Is it possible for a DFA to have no accept states? If so, define a DFA
with no accept states as a 5-tuple, and explain why it meets the above
requirements. If not, explain why this is not possible.

c. In class, we said that a DFA must obey the rule that for any state and
any symbol, there has to be exactly one transition defined on that
symbol. What part of the definition guarantees this?

d. Is it possible for a DFA to have an unreachable state (i.e., a state that
is never entered, regardless of what string you run the DFA on)? If
so, define a DFA with an unreachable state as a 5-tuple, and explain
why it meets the above requirements. If not, explain why this is not
possible.



4

Exercise 3

While it’s possible to do this
completely deterministically,
we want you to use the
guess-and-check approach
from class, which will make
it easier!

Construct a nondeterministic finite automaton (NFA) to recognize
the language

{w ∈ Σ∗ ∣ w ends in a, bb, or ccc},

where Σ = {a, b, c}.

Exercise 4

While a DFA for this
language would require at
least 64 states, an NFA needs
far fewer. Consider: What
would you do if you knew
which character was going
to appear at most twice?
Embrace the
nondeterminism!

Construct a nondeterministic finite automaton (NFA) to recognize
the language

{w ∈ Σ∗ ∣ some character in Σ appears at most twice in w},

where Σ = {a, b, c}.



5

Exercise 5

Don’t design a new DFA
from scratch. I want you to
practice the conversion
process that we used to
prove that an equivalent DFA
exists for every NFA.

Convert the following NFA (with ε-transitions) to an equivalent DFA.
First compute the ε-closure for each of the states in the NFA and
then use the subset construction to create a DFA, either in tabular
representation or using the elements of the formal 5-tuple.

q0start q1

q2q3

a

b b

a

ε

Acknowledgments

This assignment includes exercises adapted from Keith Schwarz,
Stanford University.


