Exercise 1

We’ve introduced several terms and definitions related to Turing machines, languages, and what it means to solve a problem. Some of these terms can only describe Turing machines, while others can only describe languages. A statement that uses terms incorrectly has no meaning; it cannot be evaluated as being true or false.

Consider, by analogy, the statement “the set \mathbb{N} is even”. This statement doesn’t type-check because “even” only applies to individual numbers, and \mathbb{N} isn’t a number. Similarly, the statement “$1 \in 5$” doesn’t type-check because 5 isn’t a set.

On the other hand, the statement $\mathbb{Z} \subseteq \mathbb{N}$ type-checks, but it isn’t true – the integers aren’t a subset of the natural numbers.¹

For each of the following statements, decide whether

- the statement type-checks and is true,
- the statement type-checks and is false, or
- the statement does not type-check.

Briefly explain your answers.

a. If M is a Turing machine, w is a string, and M accepts w, then A_{TM} accepts (M, w).

b. If M is a Turing machine, w is a string, and M loops on w, then $(M, w) \notin L(U)$.

¹ This is the mathematical equivalent of a grammatically correct sentence that’s false, like “Otters aren’t cute”. You understand what the sentence means, but it’s objectively not true. They’re adorable.
c. U is decidable.

d. $\langle U \rangle$ is decidable.

e. $\{\langle U \rangle\}$ is decidable.
Exercise 2

Below are examples of Python functions that act as recognizers or
deciders.\(^2\) For each of the functions,

- What is the language the function recognizes? Use set-builder nota-
tion if appropriate.
- Is the function a decider or just a recognizer? Why?

For this exercise, let \(\Sigma = \{a, b\}\), meaning that you only need to
consider input strings made of \(a\)s and \(b\)s.

a. Answer the questions above about this function:

```python
def arthur(w: str) -> bool:
    length = len(w)

    if length % 2 == 1:
        return False

    # Indices within strings range from 0 (the first
    # character) to length - 1 (the last character).
    for i in range(0, length // 2):
        if (w[i] != "a") or (w[length - 1 - i] != "b"):
            return False

    return True
```

\(^2\) If you haven’t used Python before, don’t panic! You can
basically treat them as simplified Java, but feel free to
ask questions about any parts
you don’t understand.

% is the modulus operator,
which gives the remainder
after dividing the first
number by the second.
b. Answer the questions above about this function:

```python
def zaphod(w: str) -> bool:
    strings = ['']

    while True:
        next_strings = []
        for x in strings:
            if w == x:
                return True
            next_strings.append(x + 'a')
            next_strings.append(x + 'b')

        # On the next iteration through the `while` loop,
        # use next_strings for the `for` loop.
        strings = next_strings
```

c. Answer the questions above about this function:

```python
def trillian(w: str) -> bool:
    x = 0
    y = 1
    while len(w) != x:
        z = x + y
        x = y
        y = z
    return True
```
Exercise 3

This exercise explores the following fundamental theorem about the relationship between the R and RE languages:

If L is a language, then $L \in R$ if and only if $L \in RE$ and $ar{L} \in RE$.

This theorem has a beautiful intuition: It says that a language L is decidable ($L \in R$) precisely if, for every string in the language, it’s possible to prove it’s in the language ($L \in RE$) and, simultaneously, for every string not in the language, it’s possible to prove it’s not in the language ($\bar{L} \in RE$).

For this exercise, we’ll ask you to prove one of the two directions of this theorem.

Let L be a language where $L \in RE$ and $\bar{L} \in RE$. This means that there’s a recognizer M_{yes} for L and a recognizer M_{no} for \bar{L}. In software, you could imagine that M_{yes} and M_{no} correspond to functions with these signatures:

```python
check_in_L(w: str) -> bool
check_in_L_bar(w: str) -> bool
```

Since these functions represent recognizers, they have the following properties:

- For $w \in \Sigma^*$, $w \in L$ if and only if `check_in_L(w)` returns True.
- For $w \in \Sigma^*$, $w \in \bar{L}$ if and only if `check_in_L_bar(w)` returns True.

Show that $L \in R$ by writing pseudocode for a function

```python
is_in_L(w: str) -> bool
```

that takes as input a string w, then returns True if $w \in L$ and returns False if $w \notin L$.

You don't need to write much code here! If you find yourself writing ten or more lines of pseudocode, you're probably missing something.