Problem 1

Although much of our discussion of Turing machines will take place at a high level, it’s still instructive to try to design Turing machines at the level of individual states.

a. Every context-free language can also be decided by a Turing machine. Let \(\Sigma = \{0, 1\} \) and let \(L = \{ w \in \Sigma^* \mid w \text{ is a palindrome} \} \). (Recall that a palindrome is a string that’s the same when read forwards and backwards.) Draw the state-transition diagram for a Turing machine whose language is \(L \).

b. We’ve shown that the language \(L = \{ a^n b^n c^n \mid n \in \mathbb{N} \} \) is not context-free and therefore cannot be recognized by a pushdown automaton (nor by a finite automaton). However, it can be recognized by a Turing machine. Draw a state-transition diagram for a Turing machine whose language is \(L \).

Problem 2

Design a Turing machine that decides the language \(\{ w \mid w \text{ contains twice as many 0s as 1s} \} \) over the alphabet \(\{0, 1\} \). Give an implementation-level description in the style of Example 3.7 on page 171 (not a formal description or a state diagram).

Problem 3

In class, we alluded to the fact that \(\text{REG} \) (the class of all regular languages) is a subset of \(\text{R} \) (the class of all Turing-decidable languages). Describe a construction that, given a \(\text{DFA} \) \(D \) produces a decider \(D' \) where \(L(D) = L(D') \). Briefly justify why the TM \(D' \) you construct is a decider and why it accepts precisely the strings that \(D \) accepts.

Problem 4

What does it mean to solve a problem? If \(L \) is a language over \(\Sigma \) and \(M \) is a Turing machine with input alphabet \(\Sigma \), any of these properties may hold:

The 27th is Wednesday, but you can turn in your work in class on Tuesday if you’re done!
1. If \(M \) is a decider (i.e., halts on all inputs).
2. For any string \(w \in \Sigma^* \), if \(M \) accepts \(w \), then \(w \in L \).
3. For any string \(w \in \Sigma^* \), if \(M \) rejects \(w \), then \(w \notin L \).

To claim that a Turing machine solves a problem, it seems like it should have at least some of these properties. But we can show that having just two of these properties doesn’t say much.

a. Prove that if \(L \) is any language over \(\Sigma \), then there is a Turing machine \(M \) that satisfies properties 1 and 2 with respect to \(L \).

b. Prove that if \(L \) is any language over \(\Sigma \), then there is a Turing machine \(M \) that satisfies properties 1 and 3 with respect to \(L \).

c. Prove that if \(L \) is any language over \(\Sigma \), then there is a Turing machine \(M \) that satisfies properties 2 and 3 with respect to \(L \).

d. Suppose \(L \) is a language over \(\Sigma \) for which there is a Turing machine \(M \) that satisfies properties 1, 2, and 3. What can you say about \(L \)?

Problem 5

Give a high-level description of a Turing machine \(M \) such that \(L(M) \in R \), but \(M \) is not a decider. (This shows that just because a Turing machine's language is decidable, it's not necessarily the case that the TM itself must be a decider.)

This doesn't need to be a specific language. How could you modify a decider for some language \(L \) to be only a recognizer?