Relating DFAs and NFAs

12 September 2023
Assignment 2

Due today

Corrections due Thursday
Where are we?
We can describe a DFA with a state transition diagram,
We can describe a DFA with a state transition diagram,

![State Transition Diagram](image)

or, equivalently,

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_0</td>
<td>q_1</td>
</tr>
<tr>
<td>q_1</td>
<td>q_0</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_2</td>
</tr>
</tbody>
</table>

*
More formally, a DFA is represented as a five-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of *states*,
- Σ is the *alphabet*, a finite set of input symbols,
- $\delta: Q \times \Sigma \rightarrow Q$ is the *transition function*,
- $q_0 \in Q$ is the *start state*, and
- $F \subseteq Q$ is a set of zero or more *accept states*.
If D is a DFA, the *language of $D*$, denoted $L(D)$, is

$$\{w \in \Sigma^* \mid D \text{ accepts } w\}.$$

A language is a *regular language* if there exists a DFA D such that $L(D) = L$.

A *nondeterministic finite automaton* (NFA) can is like a DFA, but it can have missing transitions or multiple transitions defined on the same input symbol.

An NFA accepts if *any possible series of choices* leads to an accept state.
NFAs can also have a special type of transition called an ε-transition:

An NFA may follow any number of ε-transitions at any time without consuming any input.
Formally, an NFA is defined like a DFA:

\[N = (Q, \Sigma, \delta, q_0, F) \]

Except instead of

\[\delta: Q \times \Sigma \rightarrow Q, \]

we have

\[\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow \wp(Q). \]
An NFA can be thought of as a DFA that can be in many states at once.

At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.

The NFA accepts if *any* of the states that are active at the end are accept states. Otherwise, it rejects.
Just how powerful *are* NFAs?
NFAs must be at least as powerful as DFAs.

Any language that can be recognized by a DFA can be recognized by an NFA.

Why? Essentially, every DFA already *is* an NFA – just one that doesn’t exploit nondeterminism.
Can every language recognized by an NFA also be recognized by a DFA?
Can every language recognized by an NFA also be recognized by a DFA?

While NFAs seem more powerful, surprisingly, the answer is yes!
Thought experiment: How could you simulate an NFA in software?
a, b

start

q₀ → a → q₁ → b → q₂ → a → q₃

a b a b a
\[
\begin{align*}
\text{start} & \rightarrow q_0 \\
q_0 & \xrightarrow{a, b} q_1 \\
q_1 & \xrightarrow{a} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]

\[a \rightarrow \{q_0\}\]
\[a, b \rightarrow q_0 \]

\[\rightarrow \{q_0\} \]
\[
\begin{align*}
\{q_0\} & \rightarrow a, b \\
& \quad \xrightarrow{a} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\end{align*}
\]
\[
\begin{align*}
\{q_0\} & \quad \rightarrow \quad \{q_0, q_1\} \\
\end{align*}
\]
\[
\begin{align*}
\{q_0\} & \quad \{q_0, q_1\} \\
a & \quad \quad b
\end{align*}
\]
\begin{align*}
q_0 & \rightarrow \{q_0\} \\
q_0, q_1 & \rightarrow \{q_0, q_1\} \\
q_0, q_1 & \rightarrow \{q_0\}
\end{align*}
\[
\begin{align*}
\text{a, b} & \quad \rightarrow \quad \{q_0\} \\
\text{a} & \quad \rightarrow \quad \{q_0, q_1\} \\
\text{b} & \quad \rightarrow \quad \{q_0, q_1\} \\
\end{align*}
\]
A non-deterministic finite automaton (NFA) with the following transitions:

- Start state: q_0
- Transitions:
 - From q_0 on a or b: $\{q_0, q_1\}$
 - From q_1 on a: $\{q_0\}$
 - From q_1 on b: $\{q_0, q_1\}$
 - From q_2 on a: $\{q_3\}$

States:
- q_0
- q_1
- q_2
- q_3
\[
\begin{align*}
q_0 & \rightarrow \{q_0\} \\
q_0 & \rightarrow \{q_0, q_1\} \\
q_0, q_1 & \rightarrow \{q_0\} \\
q_0, q_1 & \rightarrow \{q_0, q_1\}
\end{align*}
\]
\[
\begin{align*}
&\rightarrow \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
&\{q_0, q_1\} & \{q_0, q_1\} &
\end{align*}
\]
\[
\begin{align*}
q_0 &\xrightarrow{a} q_1 \\
\{q_0\} &\rightarrow \{q_0, q_1\} \\
\{q_0, q_1\} &\rightarrow \{q_0, q_1\}
\end{align*}
\]
\[
\begin{array}{c}
\text{start} \\
q_0 \\
\rightarrow \{q_0\} \\
\{q_0, q_1\} \\
\{q_0, q_1\}
\end{array}
\begin{array}{c}
a, b \\
a \\
\rightarrow \{q_0\} \\
\{q_0, q_1\} \\
\{q_0, q_1\}
\end{array}
\begin{array}{c}
b \\
q_1 \\
\rightarrow \{q_0, q_1\} \\
\{q_0\}
\end{array}
\begin{array}{c}
a \\
q_2 \\
\rightarrow \{q_0\}
\end{array}
\begin{array}{c}
a \\
q_3
\end{array}
\]
The diagram represents a finite automaton with the following states and transitions:

- **Start state**: q_0
- **States**: q_0, q_1, q_2, q_3
- **Transitions**:
 - a: $q_0 \rightarrow q_1$
 - b: $q_1 \rightarrow q_2$, $q_2 \rightarrow q_3$
 - Loop on a from q_0

The transition table is as follows:

<table>
<thead>
<tr>
<th>Input</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>${q_0}$, ${q_0, q_1}$, ${q_0, q_1}$</td>
</tr>
<tr>
<td>b</td>
<td>${q_0, q_1}$, ${q_0, q_1}$</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\{q_0\} & \quad \{q_0, q_1\} & \quad \{q_0\} \\
\{q_0, q_1\} & \quad \{q_0, q_1\} & \quad \{q_0, q_1\}
\end{align*}
\]
\[q_0 \rightarrow \{q_0\} \]
\[q_0, q_1 \rightarrow \{q_0, q_1\} \]
\[q_0, q_1 \rightarrow \{q_0, q_1\} \]
\[a, b \rightarrow \{q_0\}, \{q_0, q_1\}, \{q_0\} \]
\[
\begin{array}{ccc}
 a & b \\
\rightarrow & \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & & \\
\end{array}
\]
\[
\begin{align*}
\text{a} & \rightarrow \{q_0\}, \{q_0, q_1\}, \{q_0, q_1\}, \{q_0, q_2\} \\
\text{b} & \rightarrow \{q_0, q_1\}, \{q_0, q_1\}, \{q_0, q_2\}
\end{align*}
\]
\[
\begin{align*}
q_0 & \xrightarrow{a, b} q_0 \\
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]
\[
\text{\{q}_0, \text{q}_1\}, \quad \text{\{q}_0, \text{q}_2\}, \quad \text{\{q}_0, \text{q}_1\}, \quad \text{\{q}_0, \text{q}_2\}, \quad \text{\{q}_0\}, \quad \text{\{q}_0, \text{q}_1\}, \quad \text{\{q}_0\}, \quad \text{\{q}_0, \text{q}_1\}, \quad \text{\{q}_0, \text{q}_2\}, \quad \text{\{q}_0\}
\]
\[
\text{a, b}
\]

\[
\begin{align*}
\text{start} & \quad \rightarrow \quad q_0, q_1, \text{start} \\
q_0 & \quad \rightarrow \quad \{q_0\} \\
q_0, q_1 & \quad \rightarrow \quad \{q_0, q_1\}, \{q_0, q_1\} \\
q_0, q_2 & \quad \rightarrow \quad \{q_0, q_1\} \\
q_0, q_2 & \quad \rightarrow \quad \{q_0, q_1, q_3\} \\
q_1 & \quad \rightarrow \quad \{q_0, q_1\} \\
q_2 & \quad \rightarrow \quad \{q_0, q_2\} \\
q_3 & \quad \rightarrow \quad \{q_0\}
\end{align*}
\]
\[
\begin{align*}
&\text{a, b} \\
&\text{start} \\
&q_0 \quad \rightarrow \quad a \quad \rightarrow \quad q_1 \\
&q_2 \quad \rightarrow \quad b \\
&q_3 \quad \rightarrow \quad a
\end{align*}
\]

\[
\text{a} \quad \rightarrow \quad \{q_0\} \quad \{q_0, q_1\} \quad \{q_0\} \\
\quad \{q_0, q_1\} \quad \{q_0, q_1\} \quad \{q_0, q_2\} \\
\quad \{q_0, q_2\} \quad \{q_0, q_1, q_3\}
\]
\[
\begin{align*}
\text{a} & \quad \text{b} \\
\rightarrow & \quad \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
& \quad \{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
& \quad \{q_0, q_2\} & \{q_0, q_1, q_3\}
\end{align*}
\]
\[
\begin{align*}
\text{a} &\quad \rightarrow \{q_0\} \\
\{q_0, q_1\} &\quad \rightarrow \{q_0, q_1\} \\
\{q_0, q_2\} &\quad \rightarrow \{q_0, q_1, q_3\}
\end{align*}
\]
\[
\begin{align*}
\text{a} &\rightarrow \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \rightarrow \{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \rightarrow \{q_0, q_1, q_3\}
\end{align*}
\]
\[
\begin{align*}
\text{ } & \rightarrow \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\}
\end{align*}
\]
$\begin{align*}
\{q_0\} & \rightarrow \{q_0\} \\
\{q_0, q_1\} & \rightarrow \{q_0, q_1\} \\
\{q_0, q_2\} & \rightarrow \{q_0, q_1, q_3\} \\
\{q_0, q_1\} & \rightarrow \{q_0, q_1\} \\
\{q_0, q_2\} & \rightarrow \{q_0, q_1\} \\
\end{align*}$
The given automaton transitions are as follows:

- **Start State (q₀)**:
 - Transition on **a** to **q₁** with set {q₀, q₁}.
 - Transition on **b** to **q₂** with set {q₀, q₁}.
 - Transition on **a** to **q₃** with set {q₀}.

- Transition on **a** between states **q₀**, **q₁**, **q₂**, and **q₃** with set {q₀, q₁, q₃}.

- Transition on **b** between states **q₀**, **q₁**, **q₂**, and **q₃** with set {q₀, q₁, q₂}.

The automaton diagram is shown with states **q₀**, **q₁**, **q₂**, and **q₃** and transitions labeled with **a** and **b**.
\[
\begin{array}{c|c|c}
\text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array}
\]
a, b

\[
\begin{array}{cccc}
\text{a} & \text{b} \\
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} \\
\end{array}
\]
\[
\begin{align*}
\{q_0\} & \quad \{q_0, q_1\} & \quad \{q_0\} \\
\{q_0, q_1\} & \quad \{q_0, q_1\} & \quad \{q_0, q_2\} \\
\{q_0, q_2\} & \quad \{q_0, q_1, q_3\} & \quad \{q_0\} \\
\{q_0, q_1, q_3\} & \quad \{q_0\}
\end{align*}
\]
\[\begin{array}{c}
\text{start} \\
\rightarrow \{q_0\} \\
\{q_0, q_1\} \rightarrow \{q_0, q_1\} \\
\{q_0, q_1\} \rightarrow \{q_0\} \\
\{q_0, q_1\} \rightarrow \{q_0, q_2\} \\
\{q_0, q_2\} \rightarrow \{q_0, q_1, q_3\} \\
\{q_0, q_1, q_3\} \rightarrow \{q_0\}
\end{array}\]
\begin{align*}
\{q_0\} & \rightarrow \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \rightarrow \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \rightarrow \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{align*}
\[
\begin{array}{c|c|c}
\text{a} & \text{b} & \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \\
\end{array}
\]
\[
\begin{array}{c|c|c}
\text{a} & \{q_0\} & \{q_0, q_1\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \{q_0\}
\end{array}
\]
a, b

\[
\begin{array}{c}
\text{start} & a & b & a \\
q_0 & q_1 & q_2 & q_3
\end{array}
\]

\[
\begin{array}{ccc}
a & \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \{q_0\}
\end{array}
\]
\[
\begin{array}{c c c}
\text{a} & \text{b} \\
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \\
\end{array}
\]
\[
\begin{array}{c|c|c}
\text{a} & \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} \\
\end{array}
\]
\[
\begin{align*}
\{q_0\} & \rightarrow \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \rightarrow \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \rightarrow \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \rightarrow \{q_0, q_1\} & \\
\end{align*}
\]
\[
\begin{align*}
\rightarrow & \quad \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
{q_0, q_1} & \quad \{q_0, q_1\} & \{q_0, q_2\} \\
{q_0, q_2} & \quad \{q_0, q_1, q_3\} & \{q_0\} \\
{q_0, q_1, q_3} & \quad \{q_0, q_1\} \\
\end{align*}
\]
\[\begin{array}{c|c|c}
\text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \{q_0, q_2\}
\end{array} \]
\[
\begin{align*}
&\text{a, b} \\
&\text{start} \\
&\text{q}_0 \quad \text{a} \quad \text{q}_1 \quad \text{b} \quad \text{q}_2 \quad \text{a} \quad \text{q}_3 \\
\end{align*}
\]

\[
\begin{array}{ccc}
\text{a} & \text{b} \\
\rightarrow & \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
& \{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
& \{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
& \ast \{q_0, q_1, q_3\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\end{array}
\]
The automaton transitions are as follows:

- From q_0, an a or b leads to q_1.
- From q_1, a b leads to q_2, and an a leads back to q_0.
- From q_2, an a leads to q_3.
- From q_3, any input leads back to q_3.

The input string shown is $a b a a a b a$.
The diagram represents a deterministic finite automaton (DFA) with the following transitions:

- Start state: \(q_0 \)
- Transitions:
 - \(q_0 \) on \(a \) goes to \(q_1 \)
 - \(q_1 \) on \(b \) goes to \(q_2 \)
 - \(q_2 \) on \(a \) goes to \(q_3 \)

The input string is: \(a \ b \ a \ a \ b \ a \ a \)
\[
\begin{align*}
\text{start} & \quad \xrightarrow{a, b} q_0 \\
 q_0 & \quad \xrightarrow{a} q_1 \quad \xrightarrow{b} q_2 \quad \xrightarrow{a} q_3 \\
\end{align*}
\]

\[
\begin{align*}
\{q_0, q_1, q_3\} & \quad \xrightarrow{a, b} \{q_0, q_1\} \\
\{q_0, q_1\} & \quad \xrightarrow{a} \{q_0, q_2\} \quad \xrightarrow{b} \{q_0, q_1, q_3\} \\
\end{align*}
\]

\[
\begin{align*}
\text{input: a b a a b a} \\
\end{align*}
\]
The image contains a deterministic finite automaton (DFA) with states labeled as q_0, q_1, q_2, and q_3. The transition diagram shows that the automaton starts at state q_0 and can transition to q_1 upon reading an 'a' or 'b'. From q_1, it can transition to q_2 upon reading a 'b', and from q_2, it can transition to q_3 upon reading an 'a'. The automaton accepts the string $abaabaa$.

The diagram also includes a representation of the automaton's state transitions as a multiset automaton, with states $\{q_0\}$, $\{q_0, q_1\}$, $\{q_0, q_2\}$, and $\{q_0, q_1, q_3\}$. The transitions are indicated by arrows labeled with the respective input symbols (a or b).
The diagram shows a deterministic finite automaton (DFA) with states q_0, q_1, q_2, and q_3. The transitions are labeled with input symbols a and b.

- From q_0, on input a, it transitions to q_1.
- From q_1, on input b, it transitions to q_2.
- From q_2, on input a, it transitions to q_3.

The tape contains the input string $abaababa$. The automaton starts at state q_0 and moves through the states according to the input symbols.
This method of transforming an NFA for a language L into a DFA for L is called the *subset construction*.

Each state in the DFA corresponds to a set of states in the NFA.

The start state in the DFA corresponds to the start state of the NFA.

The accept states in the DFA correspond to the sets of states that would be considered to accept in the NFA when using the massive parallel intuition.

If a state q in the DFA corresponds to a set of states S in the NFA, then the transition from state q on a character a is found as follows:

 Let S' be the set of states in the NFA that can be reached by following a transition labeled a from any of the states in S.

 The state q in the DFA transitions on a to a DFA state corresponding to the set of states S'.

Introduced by Rabin & Scott, 1959
In converting an NFA to a DFA, the DFA’s states correspond to sets of NFA states.

Useful fact: $|\mathcal{P}(S)| = 2^{|S|}$ for any finite set S.

In the worst case, the construction can result in a DFA that is *exponentially larger* than the original NFA.
A language L is called a *regular language* if there exists a DFA D such that $L(D) = L$.
THEOREM Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

PROOF Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA recognizing some language A.

We can construct a DFA $D = (Q', \Sigma, \delta', q_0', F')$ that recognizes A:

- $Q' = \emptyset (Q)$
- $q_0' = \{ q_0 \}$
- $F' = \{ R \in Q' \mid R$ contains an accept state of $N \}$
- For $R \in Q'$ and $a \in \Sigma$, we define $\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$

Every state R of D is a set of states of N.

When D is in state R and reads a symbol a, it tracks where N would go on a each state in R.

As in Sipser, we’re using R both as a state of D and as a set of states of N.
Wait... What about NFAs with ε-transitions?
It’ll be easier for us to represent the equivalent DFA as a table rather than a (big, messy) diagram.
Let’s start off by thinking what the start state of our DFA is going to be.
Let's start off by thinking what the start state of our DFA is going to be.
Let's start off by thinking what the start state of our DFA is going to be.
The start state of the NFA includes the start state q_0 of the DFA and q_3 since you can get to q_3 from q_0 by an ε-transition.
\[\varepsilon \rightarrow \{q_0, q_3\} \]
\[\begin{align*}
&\{q_0, q_3\} \\
\end{align*} \]
\[a \rightarrow \{q_0, q_3\} \]

Diagram:

- Start state: \(q_0 \)
- Transitions:
 - \(q_0 \) to \(q_1 \) on \(a \)
 - \(q_0 \) to \(q_2 \) on \(\Sigma \)
 - \(q_2 \) to \(q_1 \) on \(b \)
 - \(q_3 \) to \(q_4 \) on \(\Sigma \)
 - \(q_3 \) to \(q_3 \) on \(b \)
 - \(q_1 \) to \(q_1 \) on \(\epsilon \) (dotted line)

States:
- \(q_0 \)
- \(q_1 \)
- \(q_2 \)
- \(q_3 \)
- \(q_4 \)
\[
\begin{align*}
\text{start} & \rightarrow q_0 \\
q_0 & \xrightarrow{a} q_1 \\
q_0 & \xrightarrow{\varepsilon} \xrightarrow{\Sigma} q_3 \\
q_2 & \xrightarrow{\Sigma} b \xrightarrow{\Sigma} q_4 \\
q_1 & \xrightarrow{\Sigma} q_1 \\
q_2 & \xrightarrow{b} q_4 \\
\end{align*}
\]
\[\delta(q_0, a) = q_1, \quad \delta(q_0, \epsilon) = q_0, \quad \delta(q_0, b) = q_2, \quad \delta(q_1, a) = q_1, \quad \delta(q_1, b) = \epsilon, \quad \delta(q_2, \Sigma) = q_2, \quad \delta(q_3, \Sigma) = q_3, \quad \delta(q_3, b) = q_4, \quad \delta(q_4, b) = q_4, \quad \delta(q_2, \epsilon) = q_2, \quad \delta(q_2, b) = q_2, \quad \delta(q_4, a) = q_0, \quad \delta(q_4, b) = q_3, \quad \delta(q_0, \epsilon) = q_0 \]

\[\delta(q_0, \Sigma^*) \rightarrow \{q_0, q_3\} \]

\(a \quad b \)
\begin{align*}
\{q_0, q_3\} & \rightarrow \{q_1, q_4\} \\
\Sigma & \\
\epsilon & \\
\Sigma & \\
\end{align*}
\[
\begin{align*}
\epsilon & \rightarrow \{q_0, q_3\} \\
\{q_1, q_4\} & \quad a \\
& \quad b
\end{align*}
\]

\[
\begin{array}{c}
\text{start} \\
\\downarrow \Sigma \\
q_0 \\
\\downarrow \varepsilon \\
q_3 \quad \uparrow \Sigma \\
\\downarrow b \\
q_4
\end{array}
\]

\[
\begin{array}{c}
q_0 \\
\quad a \\
\quad b \\
\rightarrow q_1
\end{array}
\]
\[
\begin{align*}
\{q_0, q_3\} &\rightarrow \{q_0, q_3\} \\
\{q_1, q_4\} &\rightarrow \{q_1, q_4\}
\end{align*}
\]
\[
\begin{align*}
\rightarrow \{q_0, q_3\} & \quad \rightarrow \{q_1, q_4\}
\end{align*}
\]
\[q_0 \rightarrow \{ q_0, q_3 \} \]

\[q_1 \rightarrow \{ q_1, q_4 \} \]
\[q_0 \rightarrow \{q_0, q_3\} \cap \{q_1, q_4\} \]
\begin{align*}
\begin{array}{c}
q_0 & \xrightarrow{a} q_1 \\
& \xleftarrow{\varepsilon} q_3 \\
q_3 & \xrightarrow{b} q_4 \\
q_2 & \xrightarrow{\Sigma} q_0, \{q_0, q_3\} \\
& \xrightarrow{b} \{q_1, q_4\}, \{q_4\}
\end{array}
\end{align*}
\[
\begin{align*}
\Sigma & \rightarrow \{q_0, q_3\} \\
\{q_1, q_4\} & \rightarrow \{q_1, q_4\}
\end{align*}
\]
\begin{align*}
\delta(q_0, a) &= \{q_0, q_3\}, \\
\delta(q_0, b) &= \{q_1, q_4\}, \\
\delta(q_1, a) &= \{q_0, q_3\}, \\
\delta(q_1, b) &= \{q_1, q_4\}, \\
\delta(q_2, b) &= \{q_1, q_4\}, \\
\delta(q_3, b) &= \{q_4\}, \\
\delta(q_4, b) &= \{q_4\}.
\end{align*}
\[
\begin{align*}
&\quad q_2 \quad \Sigma \quad b \quad \rightarrow \{q_0, q_3\} \\
&\quad q_0 \quad a \quad \rightarrow \{q_1, q_4\} \\
&\quad \epsilon \quad \Sigma \quad \rightarrow \{q_1, q_4\} \\
&\quad q_3 \quad b \quad \rightarrow \{q_4\}
\end{align*}
\]
A nondeterministic finite automaton (NFA) with the following states and transitions:

- States: q_0, q_1, q_2, q_3, q_4
- Transitions:
 - q_0 on a to q_1
 - q_0 on ε to q_3
 - q_3 on Σ to q_4
 - q_2 on Σ to q_3
 - q_2 on b to q_3
 - q_1 on a to q_2
 - q_1 on b to q_4

Final states:
- $\{q_0, q_3\}$
- $\{q_1, q_4\}$
- \emptyset

Input symbols: a, b
A few steps later…

\[
\begin{array}{cc}
\{q_0, q_3\} & \{q_1, q_4\} \\
\{q_1, q_4\} & \emptyset \\
\end{array}
\]
\[
\begin{align*}
\quad & \Sigma \\
\text{start} & \rightarrow q_0 \\
q_0 & \rightarrow a \rightarrow q_1 \\
& \quad b \rightarrow \Sigma \\
& \quad \varepsilon \\
q_3 & \rightarrow \Sigma \\
q_3 & \rightarrow b \rightarrow q_4 \\
\end{align*}
\]

Transition function:

- \(a \): \(\{q_0, q_3\} \)
- \(\varepsilon \): \(\{q_1, q_4\} \)
- \(b \): \(\emptyset \)

States:

- \(q_0 \)
- \(q_1 \)
- \(q_2 \)
- \(q_3 \)
- \(q_4 \)
\[
q_0 \xrightarrow{a} q_1, \quad \{q_0, q_3\} \quad \rightarrow \{q_1, q_4\} \quad \{q_2, q_3\}
\]

\[
q_2 \xrightarrow{b} q_1, \quad \{q_0, q_3\} \quad \rightarrow \{q_1, q_4\} \quad \{q_4\}
\]

\[
q_3 \xrightarrow{\varepsilon} q_4, \quad \{q_2, q_3\} \quad \rightarrow \{q_4\} \quad \{q_3\}
\]
\[q \xrightarrow{\Sigma} \{q_0, q_3\} \]
\[\{q_1, q_4\} \]
\[\{q_1, q_4\} \]
\[\{q_3\} \]

\[q \xrightarrow{\epsilon} \{q_2, q_3\} \]
\[\{q_4\} \]
\[\{q_2, q_3\} \]
\[\{q_3\} \]
$$\begin{array}{c}
\text{a} \\
\{q_1, q_4\} \\
\emptyset \\
\{q_2, q_3\} \\
\text{b} \\
\{q_4\} \\
\emptyset \\
\{q_3\}
\end{array}$$
\[
\begin{align*}
q_0 &\rightarrow \{q_0, q_3\} \\
q_1 &\rightarrow \{q_1, q_4\} \\
q_2 &\rightarrow \{q_4\} \\
q_3 &\rightarrow \{q_2, q_3\} \\
q_4 &\rightarrow \{q_3\}
\end{align*}
\]
\[
\begin{align*}
&\text{Transition Table:} \\
&a & b \\
&\{q_0, q_3\} & \{q_0, q_3, q_4\} \\
&\{q_1, q_4\} & \{q_1, q_4, q_3\} \\
&\{q_4\} & \{q_4, q_3, q_4\} \\
&\emptyset & \{q_2, q_3\} \\
&\emptyset & \{q_3\} \\
&\{q_0, q_4\} & \{q_0, q_3, q_4\}
\end{align*}
\]

\[a \xrightarrow{\varepsilon} \text{q}_1, \quad b \xrightarrow{\varepsilon} \text{q}_4\]
A few steps later…

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q1, q4}</td>
<td>{q4}</td>
<td></td>
</tr>
<tr>
<td>{q1, q4}</td>
<td>{q2, q3}</td>
<td></td>
</tr>
<tr>
<td>{q4}</td>
<td>{q3}</td>
<td></td>
</tr>
<tr>
<td>{q0, q3, q4}</td>
<td>{q0, q3, q4}</td>
<td></td>
</tr>
</tbody>
</table>
What row is missing?
\begin{itemize}
\item From state q_0 on input a go to state q_1.
\item From state q_0 on input ε go to state q_3.
\item From state q_3 on input b go to state q_4.
\item From state q_2 on input Σ go to state q_0.
\item From state q_1 on input b go to state q_0.
\item From state q_3 on input b go to state q_4.
\item From state q_4 on input ε go to state q_3.
\item From state q_3 on input Σ go to state q_4.
\end{itemize}

For input a:
\begin{itemize}
\item From state q_0 to state $\{q_0, q_3\}$.
\item From state q_1 to state $\{q_2, q_3\}$.
\item From state q_3 to state $\{q_0, q_3, q_4\}$.
\item From state q_4 to state $\{q_4\}$.
\end{itemize}

For input b:
\begin{itemize}
\item From state q_0 to state $\{q_1, q_4\}$.
\item From state q_1 to state $\{q_4\}$.
\item From state q_3 to state $\{q_4\}$.
\item From state q_4 to state $\{q_4\}$.
\end{itemize}
Creating a DFA from an NFA with ε-transitions

1. Compute the ε-closure for each state, i.e., the set of states reachable from that state following only ε-transitions.

2. The start state is the ε-closure of q_0, i.e., $E(\{q_0\})$.

3. Define δ for each $a \in \Sigma$ and each ε-closed set S:

 If a state $p \in S$ can reach state q on input a (not ε!), then add a transition on input a from S to $E(q)$.

4. The set of accept states for the DFA now includes those sets that contain at least one accept state of the NFA.
Exercise

Convert this NFA to a DFA.
Step 1

$E(\{q_0\}) = \{q_0, q_1, q_6\}$

$E(\{q_1\}) = \{q_1\}$

$E(\{q_2\}) = \{q_2, q_3\}$

$E(\{q_3\}) = \{q_3\}$

$E(\{q_4\}) = \{q_4, q_5\}$

$E(\{q_5\}) = \{q_5\}$

$E(\{q_6\}) = \{q_6\}$

$E(\{q_7\}) = \{q_7, q_5\}$
\textbf{Step 1}

\begin{align*}
E\{q_0\} &= \{q_0, q_1, q_6\} \\
E\{q_1\} &= \{q_1\} \\
E\{q_2\} &= \{q_2, q_3\} \\
E\{q_3\} &= \{q_3\} \\
E\{q_4\} &= \{q_4, q_5\} \\
E\{q_5\} &= \{q_5\} \\
E\{q_6\} &= \{q_6\} \\
E\{q_7\} &= \{q_7, q_5\}
\end{align*}

\textbf{Step 2}

Start state

\[\{q_0, q_1, q_6\} \]
Step 1

\[E(\{q_0\}) = \{q_0, q_1, q_6\} \]
\[E(\{q_1\}) = \{q_1\} \]
\[E(\{q_2\}) = \{q_2, q_3\} \]
\[E(\{q_3\}) = \{q_3\} \]
\[E(\{q_4\}) = \{q_4, q_5\} \]
\[E(\{q_5\}) = \{q_5\} \]
\[E(\{q_6\}) = \{q_6\} \]
\[E(\{q_7\}) = \{q_7, q_5\} \]

Step 2

Start state

Step 3

Compute transitions, using \(\varepsilon\)-closure \(E\).

\[E(\{q_2, q_7\}) \]
Step 1

$E(\{q_0\}) = \{q_0, q_1, q_6\}$
$E(\{q_1\}) = \{q_1\}$
$E(\{q_2\}) = \{q_2, q_3\}$
$E(\{q_3\}) = \{q_3\}$
$E(\{q_4\}) = \{q_4, q_5\}$
$E(\{q_5\}) = \{q_5\}$
$E(\{q_6\}) = \{q_6\}$
$E(\{q_7\}) = \{q_7, q_5\}$

Step 2

Start state

Step 3

Compute transitions, using ε-closure E.

ε-closure:

- $E(\{q_0\}) = \{q_0, q_1, q_6\}$
- $E(\{q_1\}) = \{q_1\}$
- $E(\{q_2\}) = \{q_2, q_3\}$
- $E(\{q_3\}) = \{q_3\}$
- $E(\{q_4\}) = \{q_4, q_5\}$
- $E(\{q_5\}) = \{q_5\}$
- $E(\{q_6\}) = \{q_6\}$
- $E(\{q_7\}) = \{q_7, q_5\}$

Transitions:

- $a : \{q_0, q_1, q_6\} \rightarrow \{q_0, q_1, q_6\}$
- $a : \{q_2, q_3, q_7, q_5\}$
Step 1

\[E(\{q_0\}) = \{q_0, q_1, q_6\} \]
\[E(\{q_1\}) = \{q_1\} \]
\[E(\{q_2\}) = \{q_2, q_3\} \]
\[E(\{q_3\}) = \{q_3\} \]
\[E(\{q_4\}) = \{q_4, q_5\} \]
\[E(\{q_5\}) = \{q_5\} \]
\[E(\{q_6\}) = \{q_6\} \]
\[E(\{q_7\}) = \{q_7, q_5\} \]

Step 2

Start state

\[\epsilon \]
\[a \]

Step 3

Compute transitions, using \(\epsilon \)-closure \(E \).

Start state

\[\{q_0, q_1, q_6\} \]
\[\{q_2, q_3, q_7, q_5\} \]

\[\{q_2, q_3, q_7, q_5\} \]
Step 1

\[
E(\{q_0\}) = \{q_0, q_1, q_6\} \\
E(\{q_1\}) = \{q_1\} \\
E(\{q_2\}) = \{q_2, q_3\} \\
E(\{q_3\}) = \{q_3\} \\
E(\{q_4\}) = \{q_4, q_5\} \\
E(\{q_5\}) = \{q_5\} \\
E(\{q_6\}) = \{q_6\} \\
E(\{q_7\}) = \{q_7, q_5\}
\]

Step 2

Start state

Step 3

Compute transitions, using \(\varepsilon\)-closure \(E\).

\[
\varepsilon
\]

\[
E(\{q_4\})
\]
Step 1

\[E(\{q_0\}) = \{q_0, q_1, q_6\} \]
\[E(\{q_1\}) = \{q_1\} \]
\[E(\{q_2\}) = \{q_2, q_3\} \]
\[E(\{q_3\}) = \{q_3\} \]
\[E(\{q_4\}) = \{q_4, q_5\} \]
\[E(\{q_5\}) = \{q_5\} \]
\[E(\{q_6\}) = \{q_6\} \]
\[E(\{q_7\}) = \{q_7, q_5\} \]

Step 2

Start state

Step 3

Compute transitions, using \(\varepsilon \)-closure \(E \).

\[\rightarrow \{q_0, q_1, q_6\} \]
\[\rightarrow \{q_2, q_3, q_7, q_5\} \]
\[\{q_2, q_3, q_7, q_5\} \]
\[\{q_4, q_5\} \]
Step 1

\[E(\{q_0\}) = \{q_0, q_1, q_6\} \]
\[E(\{q_1\}) = \{q_1\} \]
\[E(\{q_2\}) = \{q_2, q_3\} \]
\[E(\{q_3\}) = \{q_3\} \]
\[E(\{q_4\}) = \{q_4, q_5\} \]
\[E(\{q_5\}) = \{q_5\} \]
\[E(\{q_6\}) = \{q_6\} \]
\[E(\{q_7\}) = \{q_7, q_5\} \]

Step 2

Start state

Step 3

Compute transitions, using \(\epsilon\)-closure \(E\).

\[a \rightarrow \{q_0, q_1, q_6\} \quad \{q_2, q_3, q_7, q_5\} \]
\[\{q_2, q_3, q_7, q_5\} \quad \{q_4, q_5\} \]
Step 1

\[E(\{q_0\}) = \{q_0, q_1, q_6\} \]
\[E(\{q_1\}) = \{q_1\} \]
\[E(\{q_2\}) = \{q_2, q_3\} \]
\[E(\{q_3\}) = \{q_3\} \]
\[E(\{q_4\}) = \{q_4, q_5\} \]
\[E(\{q_5\}) = \{q_5\} \]
\[E(\{q_6\}) = \{q_6\} \]
\[E(\{q_7\}) = \{q_7, q_5\} \]

Step 2

Start state

Step 3

Compute transitions, using \(\varepsilon\)-closure \(E\).

\[a \rightarrow \{q_0, q_1, q_6\} \]
\[\{q_2, q_3, q_7, q_5\} \]
\[\{q_4, q_5\} \]
\[\emptyset \]
Step 1

$E(\{q_0\}) = \{q_0, q_1, q_6\}$

$E(\{q_1\}) = \{q_1\}$

$E(\{q_2\}) = \{q_2, q_3\}$

$E(\{q_3\}) = \{q_3\}$

$E(\{q_4\}) = \{q_4, q_5\}$

$E(\{q_5\}) = \{q_5\}$

$E(\{q_6\}) = \{q_6\}$

$E(\{q_7\}) = \{q_7, q_5\}$

Step 2

Start state

Compute transitions, using ε-closure E.

Step 3

ε-closure

$E(\{q_0\}) = \{q_0, q_1, q_6\}$

$E(\{q_1\}) = \{q_1\}$

$E(\{q_2\}) = \{q_2, q_3\}$

$E(\{q_3\}) = \{q_3\}$

$E(\{q_4\}) = \{q_4, q_5\}$

$E(\{q_5\}) = \{q_5\}$

$E(\{q_6\}) = \{q_6\}$

$E(\{q_7\}) = \{q_7, q_5\}$

ε

a

$\{q_0, q_1, q_6\}$

$\{q_2, q_3, q_7, q_5\}$

$\{q_2, q_3, q_7, q_5\}$

$\{q_4, q_5\}$

\emptyset

\emptyset
Step 1

$E\left(\{q_0\}\right) = \{q_0, q_1, q_6\}$
$E\left(\{q_1\}\right) = \{q_1\}$
$E\left(\{q_2\}\right) = \{q_2, q_3\}$
$E\left(\{q_3\}\right) = \{q_3\}$
$E\left(\{q_4\}\right) = \{q_4, q_5\}$
$E\left(\{q_5\}\right) = \{q_5\}$
$E\left(\{q_6\}\right) = \{q_6\}$
$E\left(\{q_7\}\right) = \{q_7, q_5\}$

Step 2

Start state

Step 3

Compute transitions, using ϵ-closure E.

Step 4

Accept states

\[
\begin{align*}
E(\{q_0\}) &= \{q_0, q_1, q_6\} &\quad \text{Start state} \\
E(\{q_1\}) &= \{q_1\} \\
E(\{q_2\}) &= \{q_2, q_3\} \\
E(\{q_3\}) &= \{q_3\} \\
E(\{q_4\}) &= \{q_4, q_5\} \\
E(\{q_5\}) &= \{q_5\} \\
E(\{q_6\}) &= \{q_6\} \\
E(\{q_7\}) &= \{q_7, q_5\} \\
\end{align*}
\]
Step 1

$E(q_0) = \{q_0, q_1, q_6\}$

$E(q_1) = \{q_1\}$

$E(q_2) = \{q_2, q_3\}$

$E(q_3) = \{q_3\}$

$E(q_4) = \{q_4, q_5\}$

$E(q_5) = \{q_5\}$

$E(q_6) = \{q_6\}$

$E(q_7) = \{q_7, q_5\}$

Step 2

Start state

Step 3

Compute transitions, using ϵ-closure E.

Step 4

Accept states

\[
\begin{align*}
E(q_0) & = \{q_0, q_1, q_6\} & \text{Start state} \\
E(q_1) & = \{q_1\} \\
E(q_2) & = \{q_2, q_3\} \\
E(q_3) & = \{q_3\} \\
E(q_4) & = \{q_4, q_5\} \\
E(q_5) & = \{q_5\} \\
E(q_6) & = \{q_6\} \\
E(q_7) & = \{q_7, q_5\}
\end{align*}
\]
Step 1

$E(\{q_0\}) = \{q_0, q_1, q_6\}$

$E(\{q_1\}) = \{q_1\}$

$E(\{q_2\}) = \{q_2, q_3\}$

$E(\{q_3\}) = \{q_3\}$

$E(\{q_4\}) = \{q_4, q_5\}$

$E(\{q_5\}) = \{q_5\}$

$E(\{q_6\}) = \{q_6\}$

$E(\{q_7\}) = \{q_7, q_5\}$

Step 2

Start state: $E(\{q_0\}) = \{q_0, q_1, q_6\}$

Step 3

$\delta(\{q_0, q_1, q_6\}, a) = E(\{q_2, q_7\}) = \{q_2, q_3, q_7, q_5\}$

$\delta(\{q_2, q_3, q_7, q_5\}, a) = E(\{q_4\}) = \{q_4, q_5\}$

$\delta(\{q_4, q_5\}, a) = \emptyset$

$\delta(\emptyset) = \emptyset$

Step 4

$F = \{\{q_2, q_3, q_7, q_5\}, \{q_4, q_5\}\}$

This is the same process shown without using a table.
This method of transforming an NFA into a DFA is called the \textit{subset construction}. Each state in the DFA corresponds to a set of states in the NFA. The start state in the DFA corresponds to the start state of the NFA, \textit{plus all states reachable via ϵ-transitions.} The accept states in the DFA correspond to the sets of states that would be considered to accept in the NFA when using the massive parallel intuition. If a state q in the DFA corresponds to a set of states S in the NFA, then the transition from state q on a character α is found as follows:

Let S' be the set of states in the NFA that can be reached by following a transition labeled α from any of the states in S. \textit{Let S'' be the set of states in the NFA reachable from some state in S' by following zero or more ϵ-transitions.} The state q in the DFA transitions on α to a DFA state corresponding to the set of states S''. a.k.a., \textit{power set construction}
Wrap-up
A language is called a *regular language* if there exists a DFA D such that $L(D) = L$.
THEOREM A language L is regular if and only if there is some NFA N such that $L(N) = L$.

PROOF SKETCH If L is regular, there exists some DFA for it, which we can easily convert into an NFA.

If L is recognized by some NFA, we can use the subset construction to convert it into a DFA that recognizes the same language, so L is regular.
We now have two perspectives on regular languages:

- Regular languages are languages recognized by DFAs.
- Regular languages are languages recognized by NFAs.

We can now reason about regular languages in two different ways, and we can use whichever model is more convenient.
Acknowledgments

This lecture incorporates material from:

Nancy Ide, Vassar College
Keith Schwarz, Stanford University
Michael Sipser, *Introduction to the Theory of Computation*
Jeffrey Ullman, Stanford University