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Reminder: You can ask questions on Ed (including 
logistic questions). 

The first assignment will come out on Thursday and 
be due on Tuesday.  

I’ll talk more about assignments on Thursday, but I’ve posted the 
Guide to Assignments on the course website, which gives information 
you can look at.



Where are we?



What problems can we solve with a computer?



What problems can we solve with a computer?

What kind of computer?



Enter automata

An automaton is a mathematical model of a 
computing device. 

It’s an abstraction of a real computer, like how 
graphs are abstractions of social networks, 
transportation grids, etc.
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Language theory



What problems can we solve with a computer?

What’s a “problem”?



Before we can talk about what problems we can 
solve, we need a formal definition of a “problem”. 

We want a definition that 
corresponds to the problems we want to solve, 

captures a large class of problems, and 

is mathematically simple to reason about
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"16,4" Yesis_sqrt



f(x) = y

f ′(x, y) = Yes

sqrt(16) = 4

is_sqrt(16, 4) = Yes
is_sqrt(16, 3) = No



Virtually all computational problems can be recast as 
language recognition problems. 

For example, the problem of determining whether 
an integer is prime: 

Problem: Is 97 prime? 

Recast: Is the string 97 in the language of all 
primes, {2, 3, 5, 7, 13, …}?



Formalizing things



Recall that a set is an unordered collection of zero 
or more distinct objects of any type, e.g., 
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Recall that a set is an unordered collection of zero 
or more distinct objects of any type, e.g., 

∅ 

{0} 

{0, 1} 

ℕ 

ℕ0

0 objects – the empty set

1 object – the set containing the number 0

2 objects – the set containing the numbers 0 and 1

infinite objects – the set of all natural numbers

infinite objects – the set of all natural numbers including 0



An alphabet, denoted Σ, is a finite, non-empty set of 
symbols called characters, e.g., 

Binary:	 Σ = {0, 1} 

ASCII:	 Σ = {a, b, c, …, 0, 1, …, !, @, #, …}



A string over an alphabet Σ is a finite sequence of 
characters drawn from Σ. 

For example, if Σ = {a, b}, then  
	 a 
and 
	 abbaba 
are strings over Σ.



A string over an alphabet Σ is a finite sequence of 
characters drawn from Σ. 

For example, if Σ = {a, b}, then  
	 a 
and 
	 abbaba 
are strings over Σ.

This is important! You 
cannot have a string of 
infinite length!



In a programming language, a string is written with 
quotation marks, e.g., "sleepy otters".



In a programming language, a string is written with 
quotation marks, e.g., "sleepy otters".

In language theory, we omit the quotation marks 
and use visible characters for any spaces, e.g., 
sleepy␣otters.
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If you’re programming, what’s ""?

It’s a string of length 0, called the empty string. 



If you’re programming, what’s ""?

It’s a string of length 0, called the empty string. 

Because we don’t use quotation marks in theory, we 
write it as ε (epsilon).



A set of strings is called a language. 

We say that L is a language over Σ if it is a set of 
strings over the alphabet Σ.



For a set to be a language, it can’t have any elements 
except for strings. 
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For a set to be a language, it can’t have any elements 
except for strings. 

∅ 

{ε} 

{kitty} 

{kitty, cat} 

0 strings – the empty language

1 string – the language containing the empty string

1 string – the language containing the string kitty



For a set to be a language, it can’t have any elements 
except for strings. 

∅ 

{ε} 

{kitty} 

{kitty, cat} 

0 strings – the empty language

1 string – the language containing the empty string

1 string – the language containing the string kitty

2 strings – the language containing the strings kitty and cat



A language can be finite – it might contain a fixed 
number of strings, even if that number is very large! 

Or a language can be infinite – it might contain an 
unbounded number of strings!



For example, the language of palindromes over  
Σ = {a, b, c} is the infinite set 

{ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, …}



The language of all strings composed from 
characters in Σ is denoted Σ*.  

So, formally, we can say that L is a language over Σ iff  
L ⊆ Σ*.
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Mathematical lookalikes

We now have ∈, ε, Σ, and Σ* 😟
∈ is the element-of relation.

ε is the empty string.

Σ is an alphabet.

Σ* means “all strings that can be made from characters in Σ”.

This means we can write things like
We have ε ∈ Σ*, but ε ∉ Σ

which is true!



Languages

Strings Characters
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are sets of
are finite, 
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The language of a finite automaton is the set of 
strings that it accepts, i.e., strings that label paths 
that go from the start state to some accept state. 

If M is an automaton that processes characters from 
the alphabet Σ, then its language is defined as 

L(M) = {w ∈ Σ* | M accepts w}



Exercise
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Exercise

L(M) = {w | w ∈ {0, 1}* and w does not have suffix 1}
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Finite automata, revisited
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Another small problem

start q0 q1

q2

0 0 0

q1

I KNEW EXACTLY WHAT TO DO

BUT IN A MORE REAL SENSE, 
 I HAD NO IDEA WHAT TO DO

0

0, 1

0, 1

0, 1



The need for formalism

In order to reason about the limits of what finite 
automata can and cannot do, we need to formally 
specify their behavior in all cases. 

What happens if there is no transition out of a 
state on some input? 

What is there are multiple transitions out of a 
state on some input?



A deterministic finite automaton (DFA) is defined 
relative to some alphabet Σ. 

For each state in the DFA, there must be exactly one 
transition defined for each symbol in Σ. 

This is the “deterministic” part! 

There is a unique start state. 

There are zero or more accept states.
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Is this a DFA over {0, 1}?
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Is this a DFA over {0, 1}?
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Exercise

Design a finite automaton to recognize decimal 
numbers.
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