CMPU 240 - Theory of Computation

Languages and Automata

27 January 2026

Reminder: You can ask questions on Ed (including
logistic questions).

The first assignment will come out on Thursday and
be due on Tuesday.

I'll talk more about assignments on Thursday, but I've posted the

Guide to Assignments on the course website, which gives information
you can look at.

Where are we?

What problems can we solve with a computer?

What problems can we solve with a computer?

What kind of computer?

Enter automata

An automaton is a mathematical model of a
computing device.

lt's an abstraction of a real computer, like how
graphs are abstractions of social networks,
transportation grids, etc.

quarter

quarter

dime dime, quarter

<

ickel, dime,
nickel nickel

10¢ 15¢ . 20¢ quarter

start

nickel,
dime,
quarter quarter

Language theory

What problems can we solve with a computer?

What'’s a “problem™?

Before we can talk about what problems we can
solve, we need a formal definition of a “problem”.

We want a definition that

corresponds to the problems we want to solve,
captures a large class of problems, and

is mathematically simple to reason about

A string

> o 0 ©

Yes

No

\

10100111010101010...°

A string

> o 0 ©

Yes

||/|6||

sqrt

||/|6’4||

1s_sqrt

Yes

SC|Ft(1 6) = 4 f(X) =y

! l

s_sqrt(16, 4) = Yes f'(x, y) = Yes
is_sqrt(16, 3) = No

Virtually all computational problems can be recast as
language recognition problems.

For example, the problem of determining whether
an integer Is prime:

Problem: |Is 97 prime!

Recast: |s the string 97 in the language of all
primes, {2, 3, 5,7, 13, ...}{

Formalizing things

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

%

0}
0, 1}
\

N,

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

% o objects — the empty set
0]

10, 1}

\

N,

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

% 0 objects — the empty set

{O} 1 object — the set containing the number o
10, 1]

A\

No

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

% 0 objects — the empty set

{O} 1 object — the set containing the number o

{O, 1} 2 objects — the set containing the numbers o and 1
A\

No

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

% 0 objects — the empty set

{O} 1 object — the set containing the number o

{O, 1} 2 objects — the set containing the numbers o and 1
\ infinite objects — the set of all natural numbers

No

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

% 0 objects — the empty set

{O} 1 object — the set containing the number o

{O, 1} 2 objects — the set containing the numbers o and 1
\ infinite objects — the set of all natural numbers

N infinite objects — the set of all natural numbers including o

An alphabet, denoted 2, is a finite, non-empty set of
symbols called characters, e.g.,

Binary. 2 = {0, 1}
ASCII: 2 ={a,b,c,...,0,1,..., 1,0 # ...}

A string over an alphabet 2 is a finite sequence of
characters drawn from 2.

For example, if 2 = {a, b}, then
3

and
abbaba

are strings over 2.

sequence of

This is important! You

A string over an alphabet 2 is a
characters drawn from 2.

For example, if 2 = {a, b}, then cannot have a string of
. infinite length!

and
abbaba

are strings over 2.

In a programming language, a string is written with
quotation marks, e.g., "sleepy otters".

In a programming language, a string is written with
quotation marks, e.g., "sleepy otters".

In language theory, we omit the quotation marks
and use visible characters for any spaces, e.g.,
sleepy, otters.

f you're programming, what's " "¢

f you're programming, what's " "¢

it's a string of length O, called the empty string.

f you're programming, what's " "¢
it's a string of length O, called the empty string.

Because we don't use quotation marks in theory, we
write it as € (epsilon).

A set of strings is called a language.

We say that L is a language over 2 if it is a set of
strings over the alphabet 2.

For a set to be a language, it can't have any elements
except for strings.

2,
€]
{kitty}

{kitty, cat}

For a set to be a language, it can't have any elements
except for strings.

% o strings — the empty language
{€)
{kitty}

{kitty, cat}

For a set to be a language, it can't have any elements
except for strings.

% o strings — the empty language
{E} 1 string — the language containing the empty string
{kitty}

{kitty, cat}

For a set to be a language, it can't have any elements
except for strings.

% o strings — the empty language
{E} 1 string — the language containing the empty string
{kitty} 1 string — the language containing the string kitty

{kitty, cat}

For a set to be a language, it can't have any elements
except for strings.

% o strings — the empty language
{E} 1 string — the language containing the empty string
{kitty} 1 string — the language containing the string kitty

{kitty, cat} 2 strings — the language containing the strings kitty and cat

A language can be finite — it might contain a fixed
number of strings, even if that number is very large!

Or a language can be infinite — it might contain an
unbounded number of strings!

For example, the language of palindromes over
2 ={a, b, c} is the infinite set

{€, a, b, c, aa, bb, cc, aaa, aba, aca, bab, ...}

The language of all strings composed from
characters in 2 is denoted 2",

So, formally, we can say that L is a language over 2 ift
L C 2%

Mathematical lookalikes

We now have €, ¢, 2, and 2.* &

Mathematical lookalikes

We now have €, ¢, 2, and 2.* &

€ is the element-of relation.

Mathematical lookalikes

We now have €, ¢, 2, and 2.* &

€ is the element-of relation.

€ is the empty string.

Mathematical lookalikes

We now have €, ¢, 2, and 2.* &
€ is the element-of relation.
€ is the empty string.
2 is an alphabet.

Mathematical lookalikes

We now have €, ¢, 2, and 2.* &

€ is the element-of relation.
€ is the empty string.
2 is an alphabet.

2" means “all strings that can be made from characters in 2"

Mathematical lookalikes

We now have €, ¢, 2, and 2.* &

€ is the element-of relation.
€ is the empty string.
2 is an alphabet.

2" means “all strings that can be made from characters in 2"

This means we can write things like

We have e € 2% but € € 2

which is truel

Languages

are sets of

\ 4

are finite sequences of

Alphabets

are finite,

nonempty sets of

A 4

Strings

Characters

The language of a finite automaton is the set of
strings that it accepts, i.e., strings that label paths
that go from the start state to some accept state.

If M is an automaton that processes characters from
the alphabet 2, then its language is defined as

L(M) ={w e 2* | M accepts w}

Exercise

0 L

1
OO

0

L(M) ={?)

Exercise

0 L

1
OO

0

L(M) ={w | w € {0, 1}* and w does not have suffix 1}

Finite automata, revisited

A small problem

A small problem

A small problem

A small problem

A small problem

A small problem

A small problem

A small problem

A small problem

{I[KNEW,EXACTLY WHATTODO

 M——

~

BUTIN A‘MIIIIE REAL SENSE, |

\

HAD NO IDEAWHATTODO

Another small problem

o, 1

Another small problem

o, 1

Another small problem

o, 1

Another small problem

o, 1

Another small problem

o, 1

Another small problem

o, 1

Another small problem

o, 1

Another small problem

o, 1

| KNEW EXACTLY'WHATTIO

The need for formalism

In order to reason about the limits of what finite
automata can and cannot do, we need to formally
specify their behavior in all cases.

What happens if there is no transition out of a
state on some input!

What is there are multiple transitions out of a
state on some input!

A deterministic finite automaton (DFA) is defined
relative to some alphabet 2.

For each state in the DFA, there must be exactly one
transition defined for each symbol in 2.

This is the “deterministic” part!

There is a unique start state.

There are zero or more accept states.

Is this a DFA over {0, 1}

Is this a DFA over {0, 1}

Is this a DFA over {0, 1}

Is this a DFA over {0, 1}

Is this a DFA over {0, 1}

T 0
0
d1 . d2
O=
T 0

Is this a DFA over {0, 1}

T 0
0
d1 . d2
O=
T 0

Is this a DFA over {0, 1}

start o

0 0

O==C)

Is this a DFA over {0, 1}

start 0

0 0

O==C)

Is this a DFA over {0, 1}

Is this a DFA over {0, 1}

start O B, O
>\ do " Q1

0, 1

,]
O
qds d2

0

Is this a DFA over {0, 1}

e (D2
0, 1 1“

(D)

Is this a DFA over {0, 1}

Is this a DFA over {0, 1}

Is this a DFA over {0, 1}

Exercise

Design a finite automaton to recognize decimal
numbers.

Acknowledgments

This lecture incorporates material from:

Phyllis Frankl, New York University

WV. Daniel Hillis, The Pattern on the Stone

Nancy Ide, Vassar College

Keith Schwarz, Stanford University

Michael Sipser, Introduction to the Theory of Computation
Jeftrey Ullman, Stanford University

