
Languages and Automata

27 January 2026

CMPU 240 · Theory of Computation

Reminder: You can ask questions on Ed (including
logistic questions).

The first assignment will come out on Thursday and
be due on Tuesday.

I’ll talk more about assignments on Thursday, but I’ve posted the
Guide to Assignments on the course website, which gives information
you can look at.

Where are we?

What problems can we solve with a computer?

What problems can we solve with a computer?

What kind of computer?

Enter automata

An automaton is a mathematical model of a
computing device.

It’s an abstraction of a real computer, like how
graphs are abstractions of social networks,
transportation grids, etc.

start q0

0
q1

0

q3 q2

1111

0

0

dime dime, quarterdimedime

start
0¢ 5¢ 10¢ 20¢15¢ 25¢

quarter

nickel nickel nickel nickel
nickel, dime,

quarter

quarter

quarter

nickel,
dime,

quarter

Language theory

What problems can we solve with a computer?

What’s a “problem”?

Before we can talk about what problems we can
solve, we need a formal definition of a “problem”.

We want a definition that
corresponds to the problems we want to solve,

captures a large class of problems, and

is mathematically simple to reason about

A string

Yes

No

⋯

"0100111010101010…"

A string

Yes

No

⋯

A string

Yes

No

⋯

"16" 4sqrt

"16,4" Yesis_sqrt

f(x) = y

f ′(x, y) = Yes

sqrt(16) = 4

is_sqrt(16, 4) = Yes
is_sqrt(16, 3) = No

Virtually all computational problems can be recast as
language recognition problems.

For example, the problem of determining whether
an integer is prime:

Problem: Is 97 prime?

Recast: Is the string 97 in the language of all
primes, {2, 3, 5, 7, 13, …}?

Formalizing things

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

∅

{0}

{0, 1}

ℕ

ℕ0

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

∅

{0}

{0, 1}

ℕ

ℕ0

0 objects – the empty set

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

∅

{0}

{0, 1}

ℕ

ℕ0

0 objects – the empty set

1 object – the set containing the number 0

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

∅

{0}

{0, 1}

ℕ

ℕ0

0 objects – the empty set

1 object – the set containing the number 0

2 objects – the set containing the numbers 0 and 1

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

∅

{0}

{0, 1}

ℕ

ℕ0

0 objects – the empty set

1 object – the set containing the number 0

2 objects – the set containing the numbers 0 and 1

infinite objects – the set of all natural numbers

Recall that a set is an unordered collection of zero
or more distinct objects of any type, e.g.,

∅

{0}

{0, 1}

ℕ

ℕ0

0 objects – the empty set

1 object – the set containing the number 0

2 objects – the set containing the numbers 0 and 1

infinite objects – the set of all natural numbers

infinite objects – the set of all natural numbers including 0

An alphabet, denoted Σ, is a finite, non-empty set of
symbols called characters, e.g.,

Binary:	 Σ = {0, 1}

ASCII:	 Σ = {a, b, c, …, 0, 1, …, !, @, #, …}

A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

For example, if Σ = {a, b}, then
	 a
and
	 abbaba
are strings over Σ.

A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

For example, if Σ = {a, b}, then
	 a
and
	 abbaba
are strings over Σ.

This is important! You
cannot have a string of
infinite length!

In a programming language, a string is written with
quotation marks, e.g., "sleepy otters".

In a programming language, a string is written with
quotation marks, e.g., "sleepy otters".

In language theory, we omit the quotation marks
and use visible characters for any spaces, e.g.,
sleepy␣otters.

If you’re programming, what’s ""?

If you’re programming, what’s ""?

It’s a string of length 0, called the empty string.

If you’re programming, what’s ""?

It’s a string of length 0, called the empty string.

Because we don’t use quotation marks in theory, we
write it as ε (epsilon).

A set of strings is called a language.

We say that L is a language over Σ if it is a set of
strings over the alphabet Σ.

For a set to be a language, it can’t have any elements
except for strings.

∅

{ε}

{kitty}

{kitty, cat}

For a set to be a language, it can’t have any elements
except for strings.

∅

{ε}

{kitty}

{kitty, cat}

0 strings – the empty language

For a set to be a language, it can’t have any elements
except for strings.

∅

{ε}

{kitty}

{kitty, cat}

0 strings – the empty language

1 string – the language containing the empty string

For a set to be a language, it can’t have any elements
except for strings.

∅

{ε}

{kitty}

{kitty, cat}

0 strings – the empty language

1 string – the language containing the empty string

1 string – the language containing the string kitty

For a set to be a language, it can’t have any elements
except for strings.

∅

{ε}

{kitty}

{kitty, cat}

0 strings – the empty language

1 string – the language containing the empty string

1 string – the language containing the string kitty

2 strings – the language containing the strings kitty and cat

A language can be finite – it might contain a fixed
number of strings, even if that number is very large!

Or a language can be infinite – it might contain an
unbounded number of strings!

For example, the language of palindromes over
Σ = {a, b, c} is the infinite set

{ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, …}

The language of all strings composed from
characters in Σ is denoted Σ*.

So, formally, we can say that L is a language over Σ iff
L ⊆ Σ*.

Mathematical lookalikes

We now have ∈, ε, Σ, and Σ* 😟

Mathematical lookalikes

We now have ∈, ε, Σ, and Σ* 😟
∈ is the element-of relation.

Mathematical lookalikes

We now have ∈, ε, Σ, and Σ* 😟
∈ is the element-of relation.

ε is the empty string.

Mathematical lookalikes

We now have ∈, ε, Σ, and Σ* 😟
∈ is the element-of relation.

ε is the empty string.

Σ is an alphabet.

Mathematical lookalikes

We now have ∈, ε, Σ, and Σ* 😟
∈ is the element-of relation.

ε is the empty string.

Σ is an alphabet.

Σ* means “all strings that can be made from characters in Σ”.

Mathematical lookalikes

We now have ∈, ε, Σ, and Σ* 😟
∈ is the element-of relation.

ε is the empty string.

Σ is an alphabet.

Σ* means “all strings that can be made from characters in Σ”.

This means we can write things like
We have ε ∈ Σ*, but ε ∉ Σ

which is true!

Languages

Strings Characters

Alphabets

are sets of
are finite,
nonempty sets of

are finite sequences of

The language of a finite automaton is the set of
strings that it accepts, i.e., strings that label paths
that go from the start state to some accept state.

If M is an automaton that processes characters from
the alphabet Σ, then its language is defined as

L(M) = {w ∈ Σ* | M accepts w}

Exercise

start

0
1

0

q1

1

q0

L(M) = { ? }

Exercise

L(M) = {w | w ∈ {0, 1}* and w does not have suffix 1}

start

0
1

0

q1

1

q0

Finite automata, revisited

A small problem

start

00

q0

1
q1q2

A small problem

start

00

q0

1
q1q2

0 1 1 0

A small problem

start

00

q0

1
q1q2

0 1 1 0

q0

A small problem

0 1 1 0

start

00

q0

1
q1q2

q0

A small problem

0 1 1 0

start

00

q0

1
q1q2 q1

A small problem

0 1 1 0

start

00

q0

1
q1q2 q1

A small problem

0 1 1 0

start

00

q0

1
q1q2q2

A small problem

0 1 1 0

start

00

q0

1
q1q2q2

A small problem

0 1 1 0

start

00

q0

1
q1q2q2

Another small problem

start

0

q0

0, 1

q1

q2

0, 1

0, 1

Another small problem

start

0

q0

0, 1

q1

q2

0 0 0

0, 1

0, 1

Another small problem

start

0

q0

0, 1

q1

q2

0 0 0

q0
0, 1

0, 1

Another small problem

start q0 q1

q2

0 0 0

q0

0

0, 1

0, 1

0, 1

Another small problem

start q0 q1

q2

0 0 0

q1

0

0, 1

0, 1

0, 1

Another small problem

start q0 q1

q2

0 0 0

q1

0

0, 1

0, 1

0, 1

Another small problem

start q0 q1

q2

0 0 0

q1

0

0, 1

0, 1

0, 1

Another small problem

start q0 q1

q2

0 0 0

q1

I KNEW EXACTLY WHAT TO DO

BUT IN A MORE REAL SENSE,
 I HAD NO IDEA WHAT TO DO

0

0, 1

0, 1

0, 1

The need for formalism

In order to reason about the limits of what finite
automata can and cannot do, we need to formally
specify their behavior in all cases.

What happens if there is no transition out of a
state on some input?

What is there are multiple transitions out of a
state on some input?

A deterministic finite automaton (DFA) is defined
relative to some alphabet Σ.

For each state in the DFA, there must be exactly one
transition defined for each symbol in Σ.

This is the “deterministic” part!

There is a unique start state.

There are zero or more accept states.

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

start q1

q3 q2

0

0

0

0

1111

q0

Is this a DFA over {0, 1}?

start q1

q3 q2

0

0

0

0

1111

q0

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

start

q3

01

q0

q4

0

1
q2q1

1 0

0 1

01

Is this a DFA over {0, 1}?

start

q3

01

q0

q4

0

1
q2q1

1 0

0 1

01

Is this a DFA over {0, 1}?

start

00

q0

1
q1q2

Is this a DFA over {0, 1}?

start

00

q0

1
q1q2

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

start q1

q3 q2

0, 1
q0

0, 1

0, 1

0, 1

Is this a DFA over {0, 1}?

start q1

q3 q2

0, 1
q0

0, 1

0, 1

0, 1

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?
0, 1

start

0

q0

q2

q1
0, 1

0, 1

Is this a DFA over {0, 1}?
0, 1

start

0

q0

q2

q1
0, 1

0, 1

Exercise

Design a finite automaton to recognize decimal
numbers.

Acknowledgments

This lecture incorporates material from:
Phyllis Frankl, New York University

W. Daniel Hillis, The Pattern on the Stone

Nancy Ide, Vassar College

Keith Schwarz, Stanford University

Michael Sipser, Introduction to the Theory of Computation

Jeffrey Ullman, Stanford University

