CMPU 240 - Theory of Computation

Deterministic Finite Automata

29 January 2026

Assignment 1

Released after class today

Due by the start of class on Tuesday

You're required to do this one in pairs

I've posted pairs on Ed

YoL
Not

re free to swa

Ning wrong wit

<now!)

b as long as both people agree (but t

n working with someone you don't a

nere’s

ready

7\
N
10

cs.vassar.edu/~cs240/resources/assignments.pdf ¢

CMPU 240 - Spring 2026

Guide to Assignments

A goal for this course is for you to gain experience using models of
computation, formal languages, and proofs to solve problems. The
homework assignments are essential practice for you to think about
the material outside of class and identify what you don’t understand.

Working with a partner

Every homework assignment in cMPU 240 can be completed with
a partner. This is a bit unusual, but there are many advantages to
working on assignments with a partner!

« Your partner can serve as a sounding board for ideas as you're work-
ing through trickier problems.

« Having a partner can keep you accountable to make slow and steady
progress on the assignment over the week, giving you more time to
digest content and ask for help if you need it.

« Once you've written up an answer to a problem, your partner can

https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf

Where are we?

Languages

are sets of

\ 4

are finite sequences of

Alphabets

are finite,

nonempty sets of

A 4

Strings

Characters

For example, if 2. = {a, b},

For example, if 2. = {a, b},

For example, if 2. = {a, b},

z*

For example, if 2. = {a, b},

z*

'3

For example, if 2. = {a, b},

z*

'3

aa ab ba bb

ddad

For example, if 2. = {a, b},

z*

'3

aa ab ba bb

aab aba Dbaa

Check your understanding

True or false:
2 C 2%
ADX
e 2!

a = aa!’

ab = ba!

We represent computational problems as languages.

For example, the problem of testing whether a
number is prime could be treated as the language

{we {0, ..., 9} | the number with decimal representation
w is prime}

Check your understanding

True or false:
€ € abc?
{abc} u @ = {abc}!

{abc} u {e} = {abc}’

A finite automaton is a collection of states joined by
transitions.

Some state is designated as the start state.

Some number of states are designated as accept states.

The automaton processes a string by beginning in
the start state and following the indicated
transitions.

If the automaton ends in an accept state, it accepts the input.

Otherwise, the automaton rejects the input.

f A'is an automaton that processes strings over 2.,
the language of A, denoted L(A), is the set of all
strings A accepts.

Formally,

L(A) = {w € 27 | A accepts w}

A deterministic finite automaton (DFA) is the simplest
type of automaton we'll study.

A DFA is defined relative to some alphabet 2.

For each state in the DFA, there must be exactly one
transition defined for each symbol in 2 — this is the
“deterministic” part!

Designing DFAs

Design strategy for DFASs

At each point in its execution, the DFA can only
remember what state it’s in.

Therefore, build each state to correspond to some
piece of information that you need to remember.

Each state acts as an indicator of what you've already seen, sufficient

to let you decide what to do next.

There can only be finitely many states, so the DFA can only remember
finitely many things.

Example

Consider the language
L ={w e {0, 1}" | w contains 11 as a substring}

How can we design a DFA to recognize L!

L ={w e {0, 1}" | w contains 11 as a substring}

start
>

L ={w e {0, 1}" | w contains 11 as a substring}

start 0
>

L ={w e {0, 1}" | w contains 11 as a substring}

L

start 0 o
>

L ={w e {0, 1}" | w contains 11 as a substring}

L

start Q o
>

0

L ={w e {0, 1}" | w contains 11 as a substring}

L ={w e {0, 1}" | w contains 11 as a substring}

L ={w e {0, 1}" | w contains 11 as a substring}

L ={w e {0, 1}" | w contains 11 as a substring}

Example

#include <stdio.h>

/#+ print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300; floating-point version «/
main()

{
float fahr, celsius;
int lower, upper, step;

lower = 0; /+ lower limit of temperature table «/
upper = 300; /+ upper limit =/
step = 20; /+ step size «/

fahr = lower;:
while (fahr <= upper) {
celsius = (5.0/9.0) #» (fahr-32.0);

printf("%3.0f %6.1£f\n", fahr, celsius);
fahr = fahr + step;

C-style comment

Example \

#include <stdio.h>

/#+ print Fahrenheit-Celsius table
THE for fahr = 0, 20, ..., 300; floating-point version s/

float fahr, celsius;
int lower, upper, step;

lower = 0; /+ lower limit of temperature table «/
PROGRAMMING upper = 300; /+ upper limit =/
LANGUAGE step = 20; /e step size «/

fahr = lower;
while (fahr <= upper) {
Brian W. Kernighan ¢ Dennis M. Ritchie celsius = (5.0/9.0) #» (fahr-32.0);

printf("%3.0f %6.1£f\n", fahr, celsius);
fahr = fahr + step;

PRENTICE HALL SOFTWARE SERIES)

Example

Consider the language
L ={w e {a, *, /}" | wrepresents a C-style comment}

We're using the symbol a as a placeholder for any
character that isn't a star or slash (including spaces)
to keep things simple.

Example

Just like when you're programming, it helps to come
up with sets of test cases to accept and reject.

L={we{a, * /}"| wrepresents a
C-style comment}

Accept
[*ax/
[*%[
[*%% [
/*aaa*xaaax*x/

/*a/ax*x/

Reject
[%%
/*%/a/*aa*x/
aaa/**/aa
/*/
/**3
//aaaa

[*][*%[*]

L ={w e {a, *, /}* | wrepresents a C-style comment}

If 2 machine can't remember all the symbols it has
seen so far in an input string, it has to change state
based on other information, e.g.,

L, = the set of all strings with an odd number of 1s over 2 = {0, 1}

Don't need to remember exactly how many 1s have been seen — just

whether we've read an even or odd number.

Exercise

Build an automaton to recognize the set of strings
that end with ing.

Formal DFAs

Formal definition of a deterministic finite
automaton (DFA)

A DFA is represented as a five-tuple (Q, 2, 0, go, F) where

Q is a finite set of states,

2 is the alphabet, a finite set of input symbols,
0: QX2 — Q is the transition function,

do € Q is the start state, and

F C Q is a set of zero or more accept states.

Transition function 0

Takes two arguments: a state and an input symbol.

0(g, a) = the state the DFA goes to when it is in
state g and reads input symbol a.

Since 0 is a total function; there is always a next state.

If there’s no transition you want, you must add a “dead state”.

Formal description of how
finite automata compute

Let M = (Q, 2, 0, go, F) be a finite automaton.
Let w be a string, w,w,...w,, where each w; € 2.

M accepts w if a sequence of states ro, 14, ..., '
exists where each ri € Q and

1 I'o — Qo

2 5(!’,‘, Wi+1) — i+
fori=o, ..., n—1

3 rEeFr

Formal description of how
finite automata compute

Let M = (Q, 2, 0, go, F) be a finite automaton.
Let w be a string, w,w,...w,, where each w; € 2.

M accepts w if a sequence of states ro, 14, ..., '
exists where each ri € Q and

1 I's = Qo It begins at the start state,

2 5(!’,‘, Wi+1) — i+
fori=o, ..., n—1

3 rEeFr

Formal description of how
finite automata compute

Let M = (Q, 2, 0, go, F) be a finite automaton.
Let w be a string, w,w,...w,, where each w; € 2.

M accepts w if a sequence of states ro, 14, ..., '
exists where each ri € Q and

1 I's = Qo It begins at the start state,

2 O(F, Witq) = i+, each transition is allowed by the transition

fori=o, ..., n—1 function for the corresponding input symbol, and

3 rEeFr

Formal description of how
finite automata compute

Let M = (Q, 2, 0, go, F) be a finite automaton.
Let w be a string, w,w,...w,, where each w; € 2.

M accepts w if a sequence of states ro, 14, ..., '
exists where each ri € Q and

1 I's = Qo It begins at the start state,

2 O(F, Witq) = i+, each transition is allowed by the transition

fori=o, ..., n—1 function for the corresponding input symbol, and

3 rEeFr it ends in an accept state.

Example

What's the formal definition of this DFA?

quarter
quarter
dime dime dime m
PN\ <
start nickel nickel el ickel, dlme
> 5 1 0¢ 20 ¢ quarter
/ nickel,

dime,
quarter quarter

Example

What's the formal definition of this DFA?

quarter

quarter
dime m
ickel, dlme
nickel quarter
d1s d20 >
/ nickel,

dime,
quarter quarter

Example

What's the formal definition of this DFA?

Mnews — (Q! Z! 6! qO! F)

Example

What's the formal definition of this DFA?

Mnews — (Q! Z! 6! qO! F)
Example Q = {qo, G5 G10r G151 G20r Gas)

What's the formal definition of this DFA?

Mnews — (Q! Z! 5! qO! F)
Example Q = {qo, G5 G10r G151 G20r Gas)

2 ={n, d, q}

What's the formal definition of this DFA?

Mnews o (Q! Z! 6! qO! F)
Example Q = {qor G5+ G10r G135, G20r Gas)

2 ={n, d, q}

What's the formal definition of this DFA?

Mnews o (Q! Z! 6! qO! F)
Example Q = {qor G5+ G10r G135, G20r Gas)

2 ={n, d, q}

What's the formal definition of this DFA?

d
start N N
"\ qo ds d10
0(do, N) = g5

Mnews = (Q! Z! 6! qO! F)

Example Q = {qor G5+ G10r G151 G20r Gas)
2 ={n, d, q}
What's the formal definition of this DFA? .
0(do, N) = g5
0(Go, d) = Gro
0(do, 0) = Gas
0(Gs, N) = Go
0(qs, d) = Gas

0(qs, 0) = Gas

F = 1G2s5}

Example

What's the formal definition of this DFA?

Mnews = ({qo, qg, q1o, Cl15, qzo; ng}, {ﬂ, d’ Q}, 5’ C]o; {ng})

0(gos N) = g5
0(do, d) = G1o
0(qo 0) = Gas
0(gs N) = Gio
0(qs, d) = qus

0(qs, 0) = Gas

Tabular DFASs

Another way we can write down the transition
function for a DFA is as a transition table;

0 >
T
start o. 0 1 *
0
0 (
do qo Q1
di do (2

d2 g2 Q2

Another way we can write down the transition
function for a DFA is as a transition table;

0 >
T
{
ROBOSO
0
0 T
By marking the start state with
— qJqo dgo (1 — and accept states with *, the
g1 qo Q> transition table that defines 0

also specifies the entire DFA!

02 J2 o

Tabular DFAs suggest how easy it is to implement a
DFA in software.

transition table = 1{
"go": {"@": "@gO", "1": "g1"},
"g1": {"@": "g@", "1": "g2"},
"g2": {"O": "g2", "1": "g2"}

accept_states ["g2"]
run dfa(word: str) -> bool:

state = "g0O"
char word:
state = transition_table[state][char]

state accept_states

oeeoee® < > = colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSarn C,

Q Commands + Code + Text P Runall ~ [v %?: Y e v
= TNy Z W o
R [CMPU 240 - Theory of Computation - Spring 2026 q

¢> v Class 3: Tabular DFAs

(O
\,255 © %%capture
Oz
%pip install tock
O

from tock import =*

v Drawing automata

We can draw a DFA:

1. Click to make a new state

2. Double click on a state to make it an accept state.

3. Drag from one state to another to add a transition.

4. When the transition is for multiple symbols, put each on a newline (don't use commas the way we draw them in class or in

the textbook).

(4]

o Os dfa = FiniteAutomaton()

dfa.edit ()

{3 Vvariables [(3 Terminal v 10:38AM 8 Python3

https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al

Regular languages

Regular languages

DEFINITION A language L is called a regular language
if there exists a DFA D such that L(D) = L.

f L is a language and L(D) = L, we say that D
recognizes the language L.

Acknowledgments

This lecture incorporates material from:

David Chiang, University of Notre Dame
Nancy Ide, Vassar College
Keith Schwarz, Stanford University

Michael Sipser, Introduction to the Theory of Computation

