
Deterministic Finite Automata

29 January 2026

CMPU 240 · Theory of Computation

Assignment 1
Released after class today

Due by the start of class on Tuesday

You’re required to do this one in pairs

I’ve posted pairs on Ed

You’re free to swap as long as both people agree (but there’s
nothing wrong with working with someone you don’t already
know!)

https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf
https://cs.vassar.edu/~cs240/resources/assignments.pdf

Where are we?

Languages

Strings Characters

Alphabets

are sets of
are finite,
nonempty sets of

are finite sequences of

For example, if Σ = {a, b},

For example, if Σ = {a, b},

Σ

a b

Σ*

For example, if Σ = {a, b},

Σ

a b

Σ*

For example, if Σ = {a, b},

Σ

a b

ε

Σ*

For example, if Σ = {a, b},

Σ

a b

ε

aa ab ba bb

Σ*

For example, if Σ = {a, b},

Σ

a b

ε

aa ab ba bb

aaa …aab aba baa

Check your understanding

True or false:

Σ ⊆ Σ*?

ε ∈ Σ?

ε ∈ Σ*?

a = aa?

ab = ba?

We represent computational problems as languages.

For example, the problem of testing whether a
number is prime could be treated as the language

{w ∈ {0, …, 9}* | the number with decimal representation
	 w is prime}

Check your understanding

True or false:

ε ∈ abc?

{abc} ∪ ∅ = {abc}?

{abc} ∪ {ε} = {abc}?

A finite automaton is a collection of states joined by
transitions.

Some state is designated as the start state.

Some number of states are designated as accept states.

The automaton processes a string by beginning in
the start state and following the indicated
transitions.

If the automaton ends in an accept state, it accepts the input.

Otherwise, the automaton rejects the input.

If A is an automaton that processes strings over Σ,
the language of A, denoted L(A), is the set of all
strings A accepts.

Formally,

L(A) = {w ∈ Σ* | A accepts w}

A deterministic finite automaton (DFA) is the simplest
type of automaton we’ll study.

A DFA is defined relative to some alphabet Σ.

For each state in the DFA, there must be exactly one
transition defined for each symbol in Σ – this is the
“deterministic” part!

Designing DFAs

Design strategy for DFAs

At each point in its execution, the DFA can only
remember what state it’s in.

Therefore, build each state to correspond to some
piece of information that you need to remember.

Each state acts as an indicator of what you’ve already seen, sufficient
to let you decide what to do next.

There can only be finitely many states, so the DFA can only remember
finitely many things.

Example

Consider the language

L = {w ∈ {0, 1}* | w contains 11 as a substring}

How can we design a DFA to recognize L?

L = {w ∈ {0, 1}* | w contains 11 as a substring}

start q0

0

L = {w ∈ {0, 1}* | w contains 11 as a substring}

start q0

q1

1
0

L = {w ∈ {0, 1}* | w contains 11 as a substring}

start q0

q1

1
0

L = {w ∈ {0, 1}* | w contains 11 as a substring}

start q0

0

q2
1

q1

1
0

L = {w ∈ {0, 1}* | w contains 11 as a substring}

start q0

0

q2
1

q1

1
0

L = {w ∈ {0, 1}* | w contains 11 as a substring}

start q0

0

0, 1

q2
1

q1

1
0

L = {w ∈ {0, 1}* | w contains 11 as a substring}

start q0

0

Σ

q2
1

q1

1
0

L = {w ∈ {0, 1}* | w contains 11 as a substring}

start q0

0

Example

Example
C-style comment

Example

Consider the language

L = {w ∈ {a, *, /}* | w represents a C-style comment}

We’re using the symbol a as a placeholder for any
character that isn’t a star or slash (including spaces)
to keep things simple.

Example

Just like when you’re programming, it helps to come
up with sets of test cases to accept and reject.

L = {w ∈ {a, *, /}* | w represents a
	 C-style comment}

Accept
/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Reject
/**

/**/a/*aa*/
aaa/**/aa

/*/
/**a
//aaaa
/*/**/*/

a, /

L = {w ∈ {a, *, /}* | w represents a C-style comment}

start q0 q1 q2 q3 q4

q5
a, *

/

/, a

*

a, *, /

a, *, /

*

a

/

*

If a machine can’t remember all the symbols it has
seen so far in an input string, it has to change state
based on other information, e.g.,

L1 = the set of all strings with an odd number of 1s over Σ = {0, 1}

Don’t need to remember exactly how many 1s have been seen – just
whether we’ve read an even or odd number.

Exercise

Build an automaton to recognize the set of strings
that end with ing.

Formal DFAs

Formal definition of a deterministic finite
automaton (DFA)

A DFA is represented as a five-tuple (Q, Σ, δ, q0, F) where
Q is a finite set of states,

Σ is the alphabet, a finite set of input symbols,

δ: Q × Σ → Q is the transition function,

q0 ∈ Q is the start state, and

F ⊆ Q is a set of zero or more accept states.

Transition function δ

Takes two arguments: a state and an input symbol.

δ(q, a) = the state the DFA goes to when it is in
state q and reads input symbol a.

Since δ is a total function; there is always a next state.

If there’s no transition you want, you must add a “dead state”.

Formal description of how
finite automata compute

Let M = (Q, Σ, δ, qo, F) be a finite automaton.

Let w be a string, w1w2…wn, where each wi ∈ Σ.

M accepts w if a sequence of states r0, r1, …, rn
exists where each ri ∈ Q and

1 r0 = q0

2 δ(ri, wi+1) = ri+1
	 for i = 0, …, n−1

3 rn ∈ F

Formal description of how
finite automata compute

Let M = (Q, Σ, δ, qo, F) be a finite automaton.

Let w be a string, w1w2…wn, where each wi ∈ Σ.

M accepts w if a sequence of states r0, r1, …, rn
exists where each ri ∈ Q and

1 r0 = q0

2 δ(ri, wi+1) = ri+1
	 for i = 0, …, n−1

3 rn ∈ F

It begins at the start state,

Formal description of how
finite automata compute

Let M = (Q, Σ, δ, qo, F) be a finite automaton.

Let w be a string, w1w2…wn, where each wi ∈ Σ.

M accepts w if a sequence of states r0, r1, …, rn
exists where each ri ∈ Q and

1 r0 = q0

2 δ(ri, wi+1) = ri+1
	 for i = 0, …, n−1

3 rn ∈ F

It begins at the start state,

each transition is allowed by the transition
function for the corresponding input symbol, and

Formal description of how
finite automata compute

Let M = (Q, Σ, δ, qo, F) be a finite automaton.

Let w be a string, w1w2…wn, where each wi ∈ Σ.

M accepts w if a sequence of states r0, r1, …, rn
exists where each ri ∈ Q and

1 r0 = q0

2 δ(ri, wi+1) = ri+1
	 for i = 0, …, n−1

3 rn ∈ F

It begins at the start state,

each transition is allowed by the transition
function for the corresponding input symbol, and

it ends in an accept state.

dime dime, quarterdimedime

Example

start
0¢ 5¢ 10¢ 20¢15¢ 25¢

quarter

nickel nickel nickel nickel
nickel, dime,

quarter

quarter

quarter

nickel,
dime,

quarter

What’s the formal definition of this DFA?

dime dime, quarterdimedime

Example

start
q0 q5 q10 q20q15 q25

quarter

nickel nickel nickel nickel
nickel, dime,

quarter

quarter

quarter

nickel,
dime,

quarter

What’s the formal definition of this DFA?

d d, qdd

Example

start
q0 q5 q10 q20q15 q25

n

q

q

What’s the formal definition of this DFA?

n n n n, d, q

q n, d, q

d d, qdd

Example

start
q0 q5 q10 q20q15 q25

n

q

q

What’s the formal definition of this DFA?

n n n

q

	 Mnews	 = (Q, Σ, δ, qo, F)

n, d, q

n, d, q

n, d, q

d d, qdd

Example

start
q0 q5 q10 q20q15 q25

n

q

q

What’s the formal definition of this DFA?

n n n

q

	 Mnews	 = (Q, Σ, δ, qo, F)
	 Q	 = {q0, q5, q10, q15, q20, q25}

n, d, q

	 Mnews	 = (Q, Σ, δ, qo, F)
	 Q	 = {q0, q5, q10, q15, q20, q25}
	 Σ	 = {n, d, q}

d d, qdd

Example

start
q0 q5 q10 q20 q25

n

q

q

What’s the formal definition of this DFA?

n n n

q n, d, q

q15
n, d, q

d d, qdd

Example

start
q0 q5 q10 q20q15 q25

n

q

q

What’s the formal definition of this DFA?

n n n

q n, d, q

	 Mnews	 = (Q, Σ, δ, qo, F)
	 Q	 = {q0, q5, q10, q15, q20, q25}
	 Σ	 = {n, d, q}

	δ(q0, n)	 = q5

n, d, q

d d, qdd

Example

start
q0 q5 q10 q20q15 q25

n

q

q

What’s the formal definition of this DFA?

n n n

q n, d, q

	 Mnews	 = (Q, Σ, δ, qo, F)
	 Q	 = {q0, q5, q10, q15, q20, q25}
	 Σ	 = {n, d, q}

	δ(q0, n)	 = q5

	δ(q0, d)	 = q10

n, d, q

	 Mnews	 = (Q, Σ, δ, qo, F)
	 Q	 = {q0, q5, q10, q15, q20, q25}
	 Σ	 = {n, d, q}
	δ(q0, n)	 = q5

	δ(q0, d)	 = q10

	δ(q0, q)	 = q25

	δ(q5, n)	 = q10

	δ(q5, d)	 = q15

	δ(q5, q)	 = q25

	 	 ⋮

	 F	 = {q25}

Example

What’s the formal definition of this DFA?

Example

	 Mnews	 = ({q0, q5, q10, q15, q20, q25}, {n, d, q}, δ, qo, {q25})
	δ(q0, n)	 = q5

	δ(q0, d)	 = q10

	δ(q0, q)	 = q25

	δ(q5, n)	 = q10

	δ(q5, d)	 = q15

	δ(q5, q)	 = q25

	 	 ⋮

What’s the formal definition of this DFA?

Tabular DFAs

Another way we can write down the transition
function for a DFA is as a transition table:

Σ

q2
1

q1

1
0

start q0

0

0 1

q0 q0 q1

q1 q0 q2

q2 q2 q2

Another way we can write down the transition
function for a DFA is as a transition table:

0 1

q0 q0 q1

q1 q0 q2

q2 q2 q2

By marking the start state with
→ and accept states with *, the
transition table that defines δ
also specifies the entire DFA!

→

*

Σ

q2
1

q1

1
0

start q0

0

Tabular DFAs suggest how easy it is to implement a
DFA in software.

transition_table = {
 "q0": {"0": "q0", "1": "q1"},
 "q1": {"0": "q0", "1": "q2"},
 "q2": {"0": "q2", "1": "q2"}
}

accept_states = ["q2"]

def run_dfa(word: str) -> bool:
 state = "q0"
 for char in word:
 state = transition_table[state][char]
 return state in accept_states

https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al
https://colab.research.google.com/drive/1LYzbPmsXHXZyg0al_nP2RWM3gSgnh1Al

Regular languages

Regular languages

DEFINITION A language L is called a regular language
if there exists a DFA D such that L(D) = L.

If L is a language and L(D) = L, we say that D
recognizes the language L.

Acknowledgments

This lecture incorporates material from:
David Chiang, University of Notre Dame

Nancy Ide, Vassar College

Keith Schwarz, Stanford University

Michael Sipser, Introduction to the Theory of Computation

