
Nondeterministic Finite
Automata

3 February 2026

CMPU 240 · Theory of Computation

Assignment 1 due today

Assignment 1 corrections due on Thursday
Example solutions will be posted after class on Ed

Instructions and
examples for
correcting
assignments

https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf
https://www.cs.vassar.edu/~cs240/resources/assignments.pdf

Where are we?

Language theory

An alphabet is a set, denoted Σ, whose elements are
called characters.

A string over Σ is a finite sequence of zero or more
characters drawn from Σ.

The empty string, denoted ε, has no characters.

A language over Σ is a set of strings over Σ.

The language Σ* is the set of all strings over Σ.

Automata

A deterministic finite automaton (DFA) is a simple
model of computation, defined relative to some
alphabet Σ.

There is a unique start state.

There are zero or more accept states.

For each state in the DFA, there must be exactly one transition defined
for each symbol in Σ.

A sample DFA

L = {w ∈ {0, 1}* | w contains 11 as a substring}

0, 1

q2
1q1

1

0

start q0

0

A sample DFA

L = {w ∈ {0, 1}* | w contains 11 as a substring}

Σ

q2
1q1

1

0

start q0

0

Another way we can write down a DFA is as a transition table:

Σ

q2
1q1

1

0

start q0

0

0 1

q0 q0 q1

q1 q0 q2

q2 q2 q2

→

*

Warm-up

EXERCISE Design an automaton to recognize the
language of strings that start and end with the
same symbol. Let Σ = {a, b}.

Formal definition of a deterministic finite
automaton (DFA)

A DFA is represented as a five-tuple (Q, Σ, δ, q0, F) where
Q is a finite set of states,

Σ is the alphabet, a finite set of input symbols,

δ: Q × Σ → Q is the transition function,

q0 ∈ Q is the start state, and

F ⊆ Q is a set of zero or more accept states.

If D is a DFA that processes strings over Σ, the
language of D, denoted L(D) is the set of all strings D
accepts:

L(D) = {w ∈ Σ* | D accepts w}

If L(D) = L, we say that D recognizes the language L.

DEFINITION A language L is called a regular language
iff there exists a DFA D such that L(D) = L.

Nondeterministic
finite automata

start
q0

0, 1

1
q1 q3

1 0
q2

q0 has two transitions
defined on 1.

q1 has no transitions
defined on 0.

Nondeterministic finite automata are structurally
similar to DFAs, but they represent a fundamental
shift in how we’ll think about computation.

A model of computation is deterministic if, at every
point in the computation, there is exactly one choice
it can make.

The machine accepts if that series of choices leads to an accept state.

A model of computation is nondeterministic if the
machine has zero or more decisions it can make at
one point.

The machine accepts if any series of choices leads to an accept state.

A simple NFA

start
q0

0, 1

1
q1

q3

1

0

q2

0, 1

0, 1

A simple NFA

start
q0

0, 1

1
q1

q3

1

0

q2

0, 1

0, 1

0 1 0 1 1

A simple NFA

start
q0

0, 1

1
q1

q3

1

0

q2

0, 1

0, 1

0 1 0 1 1

q0

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q1

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q1

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q1

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q3

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q3

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q3

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q3

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q3

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q3

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q0

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q1

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q1

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q1

0, 1

11

0 0, 1

0, 1

q2q2
start

q0 q1

q3

0 1 0 1 1

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q2

0, 1

11

0 0, 1

0, 1

start
q0 q1

q3

q2

0 1 0 1 1

q2

Illustration by
Gemma Correll

0, 1

11

0 0, 1

0, 1

A more complex NFA

start
q0

0, 1

1
q1

1
q2

A more complex NFA

start
q0

0, 1

1
q1

1
q2

If an NFA needs to make a transition
when no transition exists, the
automaton dies and that particular
path does not accept.

start
q0 q1 q2

0 1 0 1 1

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q1

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q1

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q1😦
Nowhere to go!

0, 1

11

start
q0 q1 q2

0 1 0 1 1

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q0

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q1

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q2

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q2

0, 1

11

start
q0 q1 q2

0 1 0 1 1

q2

Illustration by
Gemma Correll

0, 1

11

Hello, NFA!

start
q0 q1 q2

ih

h i

Hello, NFA!

start
q0 q1 q2

ih

h i

q0

Hello, NFA!

start
q0 q1 q2

ih

h i

q1

Hello, NFA!

start
q0 q1 q2

ih

h i

q1

q2q2

Hello, NFA!

start
q0 q1

ih

h i

q2q2

Hello, NFA!

start
q0 q1

ih

h i

q2q2

Hello, NFA!

start
q0 q1

ih

h i

Illustration by
Gemma Correll

Tragedy in paradise

start
q0 q1 q2

ih

h i t

Tragedy in paradise

start
q0 q1 q2

i

h i t

q0
h

Tragedy in paradise

start
q0 q1 q2

ih

h i t

q1

Tragedy in paradise

start
q0 q1 q2

ih

h i t

q1

q2q2

Tragedy in paradise

start
q0 q1

ih

h i t

q2q2

Tragedy in paradise

start
q0 q1

i

h i t

h

q2

Tragedy in paradise

start
q0 q1

i

h i t

😟
h

q2

Tragedy in paradise

start
q0 q1

i

h i t

😟

Illustration by
Gemma Correll

h

Formally, an NFA is defined like a DFA:

N = (Q, Σ, δ, q0, F )

Except now the output of the transition function δ –
e.g., δ(q0, a) – isn’t a single state but a set of states:

δ: Q × Σ → ℘(Q)

The language of an NFA is

L(N) = {w ∈ Σ* | N accepts w}

start
q0

b
q1

a
q2

Let Σ = {a, b}.

What’s the language of this NFA?

start
q0

b
q1

a
q2

Let Σ = {a, b}.

What’s the language of this NFA?

L = {ab}

a, b

start
q0

b
q1

a
q2

Let Σ = {a, b}.

What’s the language of this NFA?

a, b

start
q0

b
q1

a
q2

Let Σ = {a, b}.

What’s the language of this NFA?

L = {w ∈ Σ* | ab is a suffix of w}

start
q0

Let Σ = {a, b}.

What’s the language of this NFA?

start
q0

Let Σ = {a, b}.

What’s the language of this NFA?

L = ∅

start
q0

Let Σ = {a, b}.

What’s the language of this NFA?

start
q0

Let Σ = {a, b}.

What’s the language of this NFA?

L = {ε}

start
q0

Let Σ = {a, b}.

What’s the language of this NFA?

Σ

start
q0

Let Σ = {a, b}.

What’s the language of this NFA?

L = Σ*

Σ

For DFAs, you must read a symbol in order for the
machine to make a move.

However, NFAs can move without consuming an
input symbol – an ε-transition.

An NFA can follow any number of ε-transitions at
any time without consuming any input.

Example 0 0 1

0

1

0 ε

1

ε
rstart sq

Example 0 0 1

0

1

0 ε

1

ε
rstart s

0

q

Example 0 0 1

0

1

0 ε

1

ε
r

ε

start s

0

q

Example 0 0 1

0

1

0 ε

1

ε
r

ε 0

start s

0

q

Example 0 0 1

0

1

0 ε

1

ε
r

ε 0 1

start s

0

q

Example 0 0 1

0

1

0 ε

1

ε
r

ε 0 1 ε

start s

0

q

NFAs are not required to follow ε-transitions; they’re
just another choice of path for the computation.

Allowing ε-transitions requires one more update to
our formal definition:

Now instead of

δ: Q × Σ → ℘(Q)

we have

δ: Q × (Σ ∪ {ε}) → ℘(Q).

Thinking about NFAs

Nondeterministic machines are a serious departure
from physical computers.

There are two helpful ways to think about
nondeterministic computation:

Perfect positive guessing

Massive parallelism

Perfect positive guessing

start
q0

a, b

q1
a

q3q2
b a

Perfect positive guessing

start
q0

a, b

q1
a

q3q2

a b a b a

b a

Perfect positive guessing

start
q0

a, b

q1
a

q3q2

a b a b a

q0
b a

Perfect positive guessing

start
q0 q1 q3q2

a b a b a

q0

a, b

a b a

Perfect positive guessing

start
q0 q1 q3q2

a b a b a

q0

a, b

a b a

Perfect positive guessing

start
q0 q1 q3q2

a b a b a

q0

a, b

a b a

Perfect positive guessing

start
q0 q1 q3q2

a b a b a

q1

a, b

a b a

Perfect positive guessing

start
q0 q1 q3q2

a b a b a

q1

a, b

a b a

Perfect positive guessing

start
q0 q1 q3q2

a b a b a

q2

a, b

a b a

Perfect positive guessing

start
q0 q1 q3q2

a b a b a

q2

a, b

a b a

Perfect positive guessing

start
q0 q1 q3q2

a b a b a

q3

a, b

a b a

Perfect positive guessing

start
q0 q1 q3q2

a b a b a

q3

a, b

a b a

Perfect positive guessing

start
q0 q1 q3q2

a b a b a

q3

Illustration by
Gemma Correll

a, b

a b a

NFAs have a “Liquid Luck” potion

Perfect positive guessing

We can think of nondeterministic machines as
having magic powers that enable them to guess the
correct choice of moves to make.

If there is at least one choice leading to an accept state for the input,
the machine will guess it.

If there are no choices, the machine guesses any one of the wrong
answers.

There’s no known way to physically model this
intuition for nondeterminism; we have left reality.

Massive parallelism

start
q0 q1 q3q2

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q2

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q2

a, b

a b a

Massive parallelism

start
q0

a, b

q1
a

q3q2

a b a b a

q0 q2
b a

Massive parallelism

start
q0

a, b

q1
a

q3q2

a b a b a

q0 q2
b a

Massive parallelism

start
q0

a, b

q1
a

q3q2

a b a b a

q0 q2
b a

Massive parallelism

start
q0

a, b

q1
a

q3q2

a b a b a

q0 q2q1
b a

Massive parallelism

start
q0

a, b

q1
a

q3q2

a b a b a

q0 q2q1
b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q3q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q3q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q3q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q3q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q3q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q3q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q2 q3

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q2 q3

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q2

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q2

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q2

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q2

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q2

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q2

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q3q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q3q1

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q3q1

One of the states we’re in is
an accept state, so there is a
path where the NFA accepts
the input string.

a, b

a b a

Massive parallelism

start
q0 q1 q3q2

a b a b a

q0 q3q1

Illustration by
Gemma Correll

One of the states we’re in is
an accept state, so there is a
path where the NFA accepts
the input string.

a, b

a b a

The future was and is massive parallelism.

Connection
machine CM-1
schematic art
by Tamiko Thiel,
1983

Massive parallelism

An NFA can also be thought of as a DFA that can be
in many states at once.

Each symbol read causes a transition on every active
state into each potential state that could be visited.

Nondeterministic machines can be thought of as
machines that can try any number of options in
parallel.

Two roads diverged in a wood, and I –

I took the one less traveled by,

And that has made all the difference.
Robert Frost

both of them, at the same time, like a boss

Perfect guessing is a helpful way to think about how
to design a machine to recognize a language.

Massive parallelism is a great way to test machines,
and it has nice theoretical implications.

Language of an NFA:

An NFA accepts an input string w if any path from
the start state to an accept state is labeled w.

Designing NFAs

Embrace the nondeterminism.

A good approach is guess-and-check:
Is there some information you’d like to have?

Have the machine nondeterministically guess that information!

Then have it deterministically check that the choice was right, i.e., filter
out the bad guesses.

The guess phase corresponds to trying lots of
different options.

The check phase corresponds to filtering out bad
guesses or wrong options.

L = {w ∈ {0, 1}* | w ends in 010 or 101}

start

0

1

1

0

1

0

1

0

0

1

0 1

0

1

DFA

L = {w ∈ {0, 1}* | w ends in 010 or 101}

L = {w ∈ {0, 1}* | w ends in 010 or 101}

L = {w ∈ {0, 1}* | w ends in 010 or 101}

start

0

1

1

0

0

1

NFA

Σ

L = {w ∈ {0, 1}* | w ends in 010 or 101}

start

0

1

1

0

0

1

NFA

Σ

Nondeterministically guess when the end of the string is coming up.
Deterministically check whether you were correct.

start

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

0

1

1

0

0

1

Σ

start

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

0

1

1

0

0

1

Σ

start

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

0

1

1

0

0

1

Σ

start

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

Σ
0

1

1

0

0

1

start

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

Σ
0

1

1

0

0

1

start

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

Σ
0

1

1

0

0

1

start

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

Σ
0

1

1

0

0

1

start

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

Σ
0

1

1

0

0

1

start

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

Σ
0

1

1

0

0

1

start

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

Σ
0

1

1

0

0

1

start

Σ

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

0

1

1

0

0

1

start

1 0 1 0 1 0

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

Σ
0

1

1

0

0

1

start

1 0 1 0 1 0Illustration by
Gemma Correll

L = {w ∈ {0, 1}* | w ends in 010 or 101}

NFA

Σ
0

1

1

0

0

1

L = {w ∈ {a, b, c}* | at least one of a, b, or c is not in w}

L = {w ∈ {a, b, c}* | at least one of a, b, or c is not in w}

c

b

b

start

a

c

b

a

b

c

b

a, b

a, c

b, c

c

a

b

a

Σ

a

DFA

L = {w ∈ {a, b, c}* | at least one of a, b, or c is not in w}

c

b

b

start

a

c

b

a

b

c

b

a, b

a, c

b, c

c

a

b

a

Σ

a

DFA

😟

L = {w ∈ {a, b, c}* | at least one of a, b, or c is not in w}

NFA

start

ε

ε

ε

a, b

a, c

b, c

L = {w ∈ {a, b, c}* | at least one of a, b, or c is not in w}

NFA

start

ε

ε

ε

a, b

a, c

b, c

L = {w ∈ {a, b, c}* | at least one of a, b, or c is not in w}

NFA

Nondeterministically guess which character is missing.
Deterministically check whether that character is indeed missing.

Next time

Has nondeterminism made our finite automata
more powerful? How do NFAs compare to DFAs?

Acknowledgments

This lecture incorporates material from:
Nancy Ide, Vassar College

Keith Schwarz, Stanford University

Michael Sipser, Introduction to the Theory of Computation

