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We can describe a DFA with a state transition diagram,
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or, equivalently,

We can describe a DFA with a state transition diagram,



More formally, a DFA is represented as a five-tuple 
(Q, Σ, δ, q0, F) where 

Q is a finite set of states, 

Σ is the alphabet, a finite set of input symbols, 

δ: Q × Σ → Q is the transition function, 

q0 ∈ Q is the start state, and 

F ⊆ Q is a set of zero or more accept states.



If D is a DFA, the language of D, denoted L(D), is  

{w ∈ Σ* | D accepts w}. 

A language is a regular language if there exists a DFA 
D such that L(D) = L.



A nondeterministic finite automaton (NFA) can is like 
a DFA, but it can have missing transitions or multiple 
transitions defined on the same input symbol. 

An NFA accepts if any possible series of choices leads 
to an accept state.



NFAs can also have a special type of transition called 
an ε-transition: 

An NFA may follow any number of ε-transitions at 
any time without consuming any input.
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Formally, an NFA is defined like a DFA: 

N = (Q, Σ, δ, q0, F ) 

Except instead of 

δ: Q × Σ → Q, 

we have 

δ: Q × (Σ ∪ {ε}) → ℘(Q).



An NFA can be thought of as a DFA that can be in 
many states at once. 

At each point in time, when the NFA needs to 
follow a transition, it tries all the options at the 
same time. 

The NFA accepts if any of the states that are active 
at the end are accept states. Otherwise, it rejects.



Just how powerful are NFAs?



NFAs must be at least as powerful as DFAs.  

Any language that can be recognized by a DFA can 
be recognized by an NFA.  

Why? Essentially, every DFA already is an NFA – just one that doesn’t 
exploit nondeterminism.



Can every language recognized by an NFA also be 
recognized by a DFA?



Can every language recognized by an NFA also be 
recognized by a DFA?

Yes! While NFAs seem more powerful, they’re not.



Thought experiment: How could you simulate an NFA in software?
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This method of transforming an NFA for a language 
L into a DFA for L is called the subset construction. 

Each state in the DFA corresponds to a set of states in the NFA. 

The start state in the DFA corresponds to the start state of the NFA. 

The accept states in the DFA correspond to the sets of states that 
would be considered to accept in the NFA when using the massive 
parallelism intuition. 

If a state q in the DFA corresponds to a set of states S in the NFA, 
then the transition from state q on a character α is found as follows: 

Let S′ be the set of states in the NFA that can be reached by 
following a transition labeled α from any of the states in S. 

The state q in the DFA transitions on α to a DFA state 
corresponding to the set of states S′.

Introduced by 
Rabin & Scott, 
1959

https://ieeexplore.ieee.org/document/5392601
https://ieeexplore.ieee.org/document/5392601


In converting an NFA to a DFA, the DFA’s states 
correspond to sets of NFA states. 

Useful fact: |℘(S)| = 2|S| for any finite set S. 

In the worst case, the construction can result in a 
DFA that is exponentially larger than the original NFA.



A language L is called a regular language if there 
exists a DFA D such that L(D) = L.



THEOREM  Every nondeterministic finite automaton has 
an equivalent deterministic finite automaton. 

PROOF  Let N = (Q, Σ, δ, q0, F) be an NFA recognizing 
some language A. 

We can construct a DFA D = (Qʹ, Σ, δʹ, q0ʹ, Fʹ) that 
recognizes A: 

Qʹ = ℘(Q) 

q0ʹ = {q0} 

Fʹ = {R ∈ Qʹ | R contains an accept state of N} 

For R ∈ Qʹ and α ∈ Σ, we define 

Every state R of D is a set of states of N.  

When D is in state R and reads a symbol α, it tracks where N 
would go on α each state in R.

As in Sipser, we’re using R both 
as a state of D and as a set 
of states of N.

Ə′(5� ƌ) =
⋃

U∈ 5

Ə(U� ƌ)

�



Wait… What about  
NFAs with ε-transitions?
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q0

q3

→

b

a

bΣ

Σ



start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4}

q4

→



start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4}

q4

→



start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}

q4

→



State a b
{q0, q3} {q1, q4} {q4}→

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ



start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

q1

q4

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4}

→



start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4}

→

q1

q4



start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4}

→

q1

q4



State a b
{q0, q3} {q1, q4} {q4}
{q1, q4}

→

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ



start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅

→

b

a

bΣ

Σ



start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅

→

b

a

b

A few steps later…

Σ

Σ



start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3}

→q2

q3



start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3}

→q2

q3



q3q3

start
q0 q1

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3}

→

b

a

b

q2

Σ

Σ



start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3}

→

b

a

b

q0

q4

Σ

Σ



q3q3

start
q0 q1

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3}

→

b

a

b

q4

q0

Σ

Σ



q3q3

start
q0 q1

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}

→

b

a

b

q4

q0

Σ

Σ



State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}start

q0 q1

q3

q2

q4

ε
A few steps later…

→

b

a

bΣ

Σ



start
q0 q1

q3

q2

q4

ε

→

b

a

b

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}
{q3} {q4} {q4}
{q0, q3, q4} {q1, q4} {q3, q4}
{q3, q4} {q4} {q3, q4}

What row is missing?

Σ

Σ



→

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}
{q3} {q4} {q4}
{q0, q3, q4} {q1, q4} {q3, q4}
{q3, q4} {q4} {q3, q4}
 ∅

start
q0 q1

q3

q2

q4

ε

b

a

bΣ

Σ



→

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}
{q3} {q4} {q4}
{q0, q3, q4} {q1, q4} {q3, q4}
{q3, q4} {q4} {q3, q4}
 ∅ ∅ ∅

start
q0 q1

q3

q2

q4

ε

b

a

bΣ

Σ



→

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}
{q3} {q4} {q4}
{q0, q3, q4} {q1, q4} {q3, q4}
{q3, q4} {q4} {q3, q4}
 ∅ ∅ ∅

start
q0 q1

q3

q2

q4

ε

b

a

bΣ

Σ

q3

q1



→

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}
{q3} {q4} {q4}
{q0, q3, q4} {q1, q4} {q3, q4}
{q3, q4} {q4} {q3, q4}
 ∅ ∅ ∅

start
q0 q1

q3

q2

q4

ε

b

a

bΣ

Σ

*
*

*
*
*
*



Creating a DFA from an  
NFA with ε-transitions
1  Compute the ε-closure for each state, i.e., the set of 

states reachable from that state following only  
ε-transitions. 

2  The start state is the ε-closure of q0, i.e., E({q0}) 

3  Define δ for each α ∈ Σ and each ε-closed set S: 

If a state p ∈ S can reach state q on input α (not ε!), 
then add a transition on input α from S to E(q) 

4  The set of accept states for the DFA now includes those 
sets that contain at least one accept state of the  
NFA.



Convert this NFA to a DFA.

Exercise

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

→

State

{q0, q1, q6}



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3 

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} E({q2, q7})



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3 

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3 

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5}



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3 

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} E({q4})



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3 

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3 

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}
{q4, q5}



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3 

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}
{q4, q5} ∅



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3 

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}
{q4, q5} ∅

∅ ∅



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

Step 4 

Accept states

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3 

Compute transitions, using ε-closure E.

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}
{q4, q5} ∅

∅ ∅

→



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state

Step 4 

Accept states

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}
{q4, q5} ∅

∅ ∅

Step 3 

Compute transitions, using ε-closure E.

*
*

→



Step 1 

E({q0}) = {q0, q1, q6} 
E({q1}) = {q1} 
E({q2}) = {q2, q3} 
E({q3}) = {q3} 
E({q4}) = {q4, q5} 
E({q5}) = {q5} 
E({q6}) = {q6} 
E({q7}) = {q7, q5}

Step 2 

Start state: E({q0}) = {q0, q1, q6}

Step 3 

δ({q0, q1, q6}, a)	 = E({q2, q7})	 = {q2, q3, q7, q5} 
δ({q2, q3, q7, q5}, a)	 = E({q4})	 = {q4, q5} 
δ({q4, q5}, a)	 = ∅ 

δ(∅)	 = ∅

Step 4 

F = { {q2, q3, q7, q5}, {q4, q5} }

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

This is the same 
process shown 
without using a 
table.



{q0, q1, 
q6}

{q2, q3, 
q7, q5}

{q4, q5}
aa

∅
a

a

start



This method of transforming an NFA into a DFA is 
called the subset construction. 

Each state in the DFA corresponds to a set of states in the NFA. 

The start state in the DFA corresponds to the start state of the NFA, 
plus all states reachable via ε-transitions. 

The accept states in the DFA correspond to the sets of states that 
would be considered to accept in the NFA when using the massive 
parallel intuition. 

If a state q in the DFA corresponds to a set of states S in the NFA, then 
the transition from state q on a character α is found as follows: 

Let S′ be the set of states in the NFA that can be reached by following 
a transition labeled α from any of the states in S. 

Let S′′ be the set of states in the NFA reachable from some state in S′ by 
following zero or more ε-transitions. 

The state q in the DFA transitions on α to a DFA state corresponding 
to the set of states S′′.

Now with  
ε-transitions!

a.k.a., power set 
construction



Wrap-up



A language is called a regular language if there exists 
a DFA D such that L(D) = L.



THEOREM  A language L is regular if and only if there 
is some NFA N such that L(N) = L. 

PROOF SKETCH  If L is regular, there exists some DFA 
for it, which we can easily convert into an NFA.  

If L is recognized by some NFA, we can use the 
subset construction to convert it into a DFA that 
recognizes the same language, so L is regular.



We now have two perspectives on regular 
languages: 

Regular languages are languages recognized by DFAs. 

Regular languages are languages recognized by NFAs. 

We can now reason about regular languages in two 
different ways, and we can use whichever model is 
more convenient.



This lecture incorporates material from: 
Nancy Ide, Vassar College 

Keith Schwarz, Stanford University 

Michael Sipser, Introduction to the Theory of Computation 

Jeffrey Ullman, Stanford University




