CMPU 240 - Theory of Computation

Relating DFAs and NFAS

t February 2026




Assignment 1

Corrections due today

Assignment 2

Out today; due on Tuesday



Where are we?



Ve can describe a DFA with a state transition diagram,




Ve can describe a DFA with a state transition diagram,
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More formally, a DFA is represented as a five-tuple
(Q, 2, 0, go, F) Where

Q is a finite set of states,

2 is the alphabet, a finite set of input symbols,
0: QX2 — Q is the transition function,

do € Q is the start state, and

F C Q is a set of zero or more accept states.



f D is a DFA, the language of D, denoted L(D), is

we 2* | D accepts w}.

A language is a regular language it there exists a DFA
D such that L(D) = L.



A nondeterministic finite automaton (NFA) can is like
a DFA, but it can have missing transitions or multiple
transitions defined on the same input symbol.

An NFA accepts if any possible series of choices leads
to an accept state.



NFAs can also have a special type of transition called
an g-transition:
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An NFA may follow any number of e-transitions at
any time without consuming any input.



Formally, an NFA is defined like a DFA:
N=(Q, 2, 9, go, F)

Except instead of
0: Q%2 — Q,

we have

0: U (2u{e}) — #(Q)



An NFA can be thought of as a DFA that can be in
Many states at once.

At each point in time, when the NFA needs to

follow a transition, it tries all the options at the
same time.

The NFA accepts if any of the states that are active
at the end are accept states. Otherwise, it rejects.



Just how powertul are NFASs?



NFAs must be at least as powerful as DFAs.

Any language that can be recognized by a DFA can
be recognized by an NFA.

Why! Essentially, every DFA already is an NFA — just one that doesn't
exploit nondeterminism.



Can every language recognized by an NFA also be
recognized by a DFA!



Can every language recognized by an NFA also be
recognized by a DFA!

Yes! While NFAs seem more powerful, they're not.



Thought experiment. How could you simulate an NFA in software!
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State a
— {qo} {Go, 1}




a, b
% (o))
"\ Jo (g1 d2

State a b
— {qo} {Go, 1}
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State a b
— {qo} {90, G1} {qo}
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— {qo} {Go, G4} {qo}
{90, G4} {90, G4}




(o))
g1 J2

> qo
4
State a b
— {qo} {Gos G} {0}
{90, 91} {Gor G1}




> qo
4
State a b
— {qo} {Gos G} {0}
{90, 91} {Gor G1}



$
State a b
— {qo} {Gos G4} {0}

{90, G4} {90, G4}



a, b

start % d O D
"\ Jo d1

State a b
— {qo} {Go, G4} {qo}
{90, G4} {90, G4} {Go, G2}



start
%

State a b
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This method of transforming an NFA for a language
L into a DFA for L is called the subset construction.

Each state in the DFA corresponds to a set of states in the NFA.

The start state in the DFA corresponds to the

start state of the NFA.

The accept states in the DFA correspond to the sets of states that

would be considered to accept in the NFA when using the massive

parallelism intuition.

If a state g in the DFA corresponds to a set of

states S in the NFA,

then the transition from state g on a character a is found as follows:

Let S’ be the set of states in the NFA that ca
following a transition labeled a from any of t

n be reached by

ne states in S.

The state g in the DFA transitions on a to a DFA state

corresponding to the set of states $'.

Introduced by
Rabin & Scott,

1959


https://ieeexplore.ieee.org/document/5392601
https://ieeexplore.ieee.org/document/5392601

In converting an NFA to a DFA, the DFA's states
correspond to sets of NFA states.

Useful fact: |©(S)| = 2! for any finite set S.

In the worst case, the construction can result in a
DFA that is exponentially larger than the original NFA.



A language L is called a regular language it there
exists a DFA D such that L(D) = L.



THEOREM Every nondeterministic finite automaton has
an equivalent deterministic finite automaton.

PROOF Let N = (Q, 2, 0, go, F) be an NFA recognizing
some language A.

We can construct a DFA D = (Q, 2, 0, qo, F) that
recognizes A:

Q' =#(Q)
= {qo}

F'={R € Q' | R contains an accept state of N}

As in Sipser, we’re using R both
as a state of D and as a set
of states of N.

For Re Q' and a € X, we define §'(R,a) = Uéra

re R

Every state R of D is a set of states of N.

When D is in state R and reads a symbol q, it tracks where N
would go on a each state in R.



Wait... What about
NFAs with e-transitions?
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State a b

It’ll be easier for us to represent the

equivalent DFA as a table rather than a

(big, messy) diagram.




State a b

Let’s start off by thinking what the
start state of our DFA is going to be.




State a b

Let’s start off by thinking what the
start state of our DFA is going to be.




State a b

Let’s start off by thinking what the
start state of our DFA is going to be.




State a b
o {qo, q3}

The start state of the NFA includes the
start state qo of the DFA and g3 since

you can get to g3 from qo by an

e-transition.
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A few steps later...




State a b

— {90 g5} {1, G4} {94}
{9n G4} %, {92, G3}
{94} % {qs}
{92, 93}




State a b

— {90 g5} {1, G4} {94}
{9n G4} %, {92, G3}
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{92, 93}
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{94} % {qs}
{92, 93}
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{94} % {qs}
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{9n G4} %, {92, G3}
{94} % {qs}
{92, 93}
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{9 G4} % {92, g3}
{94} % {qs}
{92 g3} {dor 93, 44} {Go) 3, G4}

A few steps later...
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— {90, g3} 191, G4} 194}
{9 G4} % {92, g3}
{94} % {qs}
{92 g3} {dor 93, 44} {Go) 3, G4}
{9:} {94} 194}
{90, G35, G4} {1, G4} {93, G4}

{94} {93, G4

What row is missing?
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{94} % {qs}
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Creating a DFA from an
NFA with e-transitions

1 Compute the e-closure for each state, i.e., the set of
states reachable from that state following only
g-transitions.

2 The start state is the e-closure of g, i.e., E({g,})
3 Define 0 for each a € 2 and each e-closed set S:

If a state p € § can reach state g on input a (not ¢&!),
then add a transition on input a from $ to E(q)

4 The set of accept states for the DFA now includes those
sets that contain at least one accept state of the
NFA.



Exercise

Convert this NFA to a DFA.




Step 1

E({do}) = {90 g1, Ge}
E({g:}) = {g4}
E({9-}) = {92, s}
E({gs}) = {93}
E({94}) = {94 G5}
E({gs}) = {95}
E({qe}) = {qe}
E({97}) = {97, g5}



Step 1 Step 2

E({go}) = {90, g1, e} ~ Start state
E({g:}) = {g4}
E({9-}) = {92, s}
E({gs}) = {93}
E(q) = (o g 9o I 96
E({gs}) = {95}

E({qe}) = {qe}

E({97}) = {97, g5}

State




Step 1 Step 2 Step 3
E({go}) = {90, g1, e} ~ Start state Compute transitions, using e-closure E.

E({g:}) = {g:}
E({q:}) = {92 g3}
oy tgy el oD
E({gs}) = {5}

E({qe}) = {qe}

E({g7}) = {97 qs}

State a




Step 1 Step 2 Step 3
E({go}) = {90, g1, e} ~ Start state Compute transitions, using e-closure E.

E({g:}) = {g:}
E({q:}) = {92 g3}
E({gs}) = {95}
E{qs) =90 95} 190 G Ge; {92 93, 97, G5}
E({gs}) = {5}

E({qe}) = {qe}

E({g7}) = {97 qs}

State a




Step 1 Step 2 Step 3
E({go}) = {90, g1, e} ~ Start state Compute transitions, using e-closure E.

E({C]1}) — {CI1}
E({qZ}) = {qz, q3}

E({gs}) = {93}
E{qs) = {gs a5 CEXEED, {92, 93, 97, G5}

E({gs}) = {gs) {92 93, 97, G5}

E({ge}) = {ge}
E({g7}) =197 g5}

State a




Step 1 Step 2 Step 3
E({go}) = {90, g1, e} ~ Start state Compute transitions, using e-closure E.

E({C]1}) — {CI1}
E({qZ}) = {qz, q3}

E({gs}) = {93}
E{qs) = {gs a5 CEXEED, {92, 93, 97, G5}

State a

E(qs)) = {g) {92 93, 97, G5} E({q4})

E({ge}) = {ge}
E({g7}) =197 g5}



Step 1 Step 2 Step 3
E({go}) = {90, g1, e} ~ Start state Compute transitions, using e-closure E.

E({C]1}) — {CI1}
E({qZ}) = {qz, q3}

E({gs}) = {93}
E{qs) = {gs a5 CEXEED, {92, 93, 97, G5}

State a

Edgc) = {gc) {92 93 97 G5} {94 G5}

E({ge}) = {ge}
E({g7}) =197 g5}



Step 1 Step 2 Step 3
E({go}) = {90, g1, e} ~ Start state Compute transitions, using e-closure E.

E({C]1}) — {CI1}
E({qZ}) = {qz, qg}

E({gs}) = {93}
E{qs) = {gs a5 CEXEED, {92, 93, 97, G5}

State a

E({q:}) = {g:} {92 93, 947, 95} {94 G5}

E({ge}) = {ge} {94 qs}
E({97}) = {97 g5}



Step 1 Step 2 Step 3
E({go}) = {90, g1, e} ~ Start state Compute transitions, using e-closure E.

E({C]1}) — {CI1}
E({qZ}) = {qz, qg}

E({gs}) = {93}
E{qs) = {gs a5 CEXEED, {92, 93, 97, G5}

State a

E({q:}) = {g:} {92 93, 947, 95} {94 G5}

E({ge}) = {qe} {94 qs} Z
E({q;}) = {97 qs}



Step 1 Step 2 Step 3
E({go}) = {90, g1, e} ~ Start state Compute transitions, using e-closure E.

E({C]1}) — {CI1}
E({qZ}) = {qz, qg}

E({gs}) = {93}
E{qs) = {gs a5 CEXEED, {92, 93, 97, G5}

State a

E({q:}) = {g:} {92 93, 947, 95} {94 G5}

E({qe}) = {qe} ;% qs} z
E({q;}) = {97 qs}




Step 1 Step 2 Step 3 Step 4
E({go}) = {90, g1, e} ~ Start state Compute transitions, using e-closure E.  Accept states

E({C]1}) — {CI1}
E({qZ}) = {qz, qg}

E({gs}) = {93}
E{qs) = {gs a5 CEXEED, {92, 93, 97, G5}

State a

E({gs) = {qs) {92 93, 97 95} gu, s}
E({qe}) = {qe} ;% qs} )

E(197}) =197 s}



Step 1 Step 2 Step 3 Step 4
E({go}) = {90, g1, e} ~ Start state Compute transitions, using e-closure E.  Accept states

E({C]1}) — {CI1}
E({qZ}) = {qz, qg}

E({gs}) = {93}
E{qs) = {gs a5 CEXEED, {92, 93, 97, G5}

State a

E({as)) = {as) (0 05 0705k {02 93
E(196}) = 19e} ;% 9s} )

E(197}) =197 s}



This is the same

process shown

without using a
table.

Step 1 Step 2

E({qo}) = {0, g1, qe}  Start state: E({qo}) = {qo, G+, Ge}
E({g:}) = {9}
E(192}) = 192 g3} Step 3

E({gs}) = {93} 5({Go, G4, Gel, a) = E({92, 9;}) =192 93, 95, g5}

E({q4}) i {94 G5} 6({92 Gz, 97 q<), @) = E({q.}) = {q4 qc)
E({gs}) = {95} 5({q. g2}, a) =

E({ge}) = {qs} 5(2) = Q
E({g7}) =197 g5}

Step 4
F={{92 93 97, s} 194 Gs}}






This method of transforming an NFA into a DFA is ak.a., power set

called the subset construction. construction
Each state in the DFA corresponds to a set of states in the NFA.
The start state in the DFA corresponds to the start state of the NFA,
plus all states reachable via e-transitions.
The accept states in the DFA correspond to the sets of states that
would be considered to accept in the NFA when using the massive
arallel intuition. ,
? Now with

If a state g in the DFA corresponds to a set of states S in the NFA, then
the transition from state g on a character a is found as follows:

e-transitions!

Let S" be the set of states in the NFA that can be reached by following
a transition labeled a from any of the states in S.

Let S” be the set of states in the NFA reachable from some state in S’ by
following zero or more e-transitions.

The state g in the DFA transitions on a to a DFA state corresponding
to the set of states §”.



VVrap-up



A language is called a regular language if there exists
a DFA D such that L(D) = L.



THEOREM A language L is regular if and only if there
is some NFA N such that L(N) = L.

PROOF SKETCH If L is regular, there exists some DFA
for it, which we can easily convert into an NFA.

If L is recognized by some NFA, we can use the
subset construction to convert it into a DFA that
recognizes the same language, so L is regular.



VWe now have two perspectives on regular
languages:

Regular languages are languages recognized by DFAs.

Regular languages are languages recognized by NFAs.

We can now reason about regular languages in two

different ways, and we can use whichever model is
more convenient.



This lecture incorporates material from:

Nancy Ide, Vassar College

Keith Schwarz, Stanford University

Michael Sipser, Introduction to the Theory of Computation
Jeftrey Ullman, Stanford University






