
Relating DFAs and NFAs

5 February 2026

CMPU 240 · Theory of Computation

Assignment 1
Corrections due today

Assignment 2
Out today; due on Tuesday

Where are we?

Σ

q2
1q1

1
0

start q0

0

We can describe a DFA with a state transition diagram,

Σ

q2
1q1

1
0

start q0

0

State 0 1

q0 q0 q1

q1 q0 q2

q2 q2 q2

→

*

or, equivalently,

We can describe a DFA with a state transition diagram,

More formally, a DFA is represented as a five-tuple
(Q, Σ, δ, q0, F) where

Q is a finite set of states,

Σ is the alphabet, a finite set of input symbols,

δ: Q × Σ → Q is the transition function,

q0 ∈ Q is the start state, and

F ⊆ Q is a set of zero or more accept states.

If D is a DFA, the language of D, denoted L(D), is

{w ∈ Σ* | D accepts w}.

A language is a regular language if there exists a DFA
D such that L(D) = L.

A nondeterministic finite automaton (NFA) can is like
a DFA, but it can have missing transitions or multiple
transitions defined on the same input symbol.

An NFA accepts if any possible series of choices leads
to an accept state.

NFAs can also have a special type of transition called
an ε-transition:

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q2
a

q1
astart

q0

q4

a

q3 q5

b

b, ε b

εε

Formally, an NFA is defined like a DFA:

N = (Q, Σ, δ, q0, F )

Except instead of

δ: Q × Σ → Q,

we have

δ: Q × (Σ ∪ {ε}) → ℘(Q).

An NFA can be thought of as a DFA that can be in
many states at once.

At each point in time, when the NFA needs to
follow a transition, it tries all the options at the
same time.

The NFA accepts if any of the states that are active
at the end are accept states. Otherwise, it rejects.

Just how powerful are NFAs?

NFAs must be at least as powerful as DFAs.

Any language that can be recognized by a DFA can
be recognized by an NFA.

Why? Essentially, every DFA already is an NFA – just one that doesn’t
exploit nondeterminism.

Can every language recognized by an NFA also be
recognized by a DFA?

Can every language recognized by an NFA also be
recognized by a DFA?

Yes! While NFAs seem more powerful, they’re not.

Thought experiment: How could you simulate an NFA in software?

q0 q1 q2
start

q3

a, b

ba a

a b a b a

q0 q1 q2
start

q3

a, b

ba a

a b a b a

q0 q1 q2
start

q3

a, b

ba a
q0

a b a b a

q0 q1 q2
start

q3

a, b

ba a
q0

a b a b a

q0 q1 q2
start

q3

a, b

ba a
q0

a b a b a

q0 q1 q2
start

q3

a, b

ba a
q0

a b a b a

q0 q1 q2
start

q3

a, b

ba a
q0 q1

a b a b a

q0 q1 q2
start

q3

a, b

ba a
q0 q1

a b a b a

q0 q1 q2
start

q3

a, b

ba a
q0 q1

a b a b a

q0 q1 q2
start

q3

a, b

ba a
q0 q1

a b a b a

q0 q1 q2
start

q3

a, b

ba a
q0 q1

a b a b a

q0 q1 q2
start

q3

a, b

ba a
q0 q2

q0 q1 q2
start

q3

a, b

ba a

State a
{q0}→

q0 q1 q2
start

q3

a, b

ba a
q0

State a
{q0}→

q0 q1 q2
start

q3

a, b

ba a
q0

State a
{q0}→

q0 q1 q2
start

q3

a, b

ba a
q0

State a
{q0} {q0, q1}→

q0 q1 q2
start

q3

a, b

ba a
q0

State a b
{q0} {q0, q1}→

q0 q1 q2
start

q3

a, b

ba a
q0

State a b
{q0} {q0, q1} {q0}→

q0 q1 q2
start

q3

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q1

State a b
{q0} {q0, q1} {q0}
{q0, q1}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q1

State a b
{q0} {q0, q1} {q0}
{q0, q1}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q1

State a b
{q0} {q0, q1} {q0}
{q0, q1}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q1

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q1

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q1

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q1

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q2

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1}

→

q0 q1 q2
start

q3

a, b

ba a
q2q0

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}

→

q0 q1 q2
start

q3

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q2

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q2

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q2

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2}

→

q0 q1 q2
start

q3

a, b

ba a
q1q0 q3

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q1 q3

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2}

→

q0 q1 q2
start

q3

a, b

ba a
q0 q1 q3

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3}

→

q2q0 q1
start

q3

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3}

→

q2q0 q1
start

q3q0 q2

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3}

→

q2q0 q1
start

q3q0 q2

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3}

→

q2q0 q1
start

q3q0 q2

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3}

→

start
q0 q1 q3q2q0

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3}

→

start
q0 q1 q3q2q0

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3}

→

start
q0 q1 q3q2q0

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}

→

q3
start

q0 q1 q2

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3}

→

q3
start

q0 q1 q2q0 q1 q3

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3}

→

q3
start

q0 q1 q2q0 q1 q3

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3}

→

q3
start

q0 q1 q2q0 q1 q3

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3}

→

q3
start

q0 q1 q2q0 q1 q3

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3}

→

q1q1q0
start

q3q2q0

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3}

→

q1q1q0q0
start

q3q2

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1}

→

q1q0
start

q3q2

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1}

→

q1q0
start

q3q2

a, b

ba a
q0 q1 q3

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1}

→

q1q0
start

q3q2

a, b

ba a
q0 q1 q3

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1}

→

q1q0
start

q3q2

a, b

ba a
q0 q1 q3

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1}

→

q1q0
start

q3q2

a, b

ba a
q0 q1 q3

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1}

→

q1q0
start

q3q2

a, b

ba a
q0 q2

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1}

→

q1q0
start

q3q2

a, b

ba a
q0 q2

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1} {q0, q2}

→

{q0}
{q0, q1,

q3}
start

{q0, q1}

{q0, q2}

b
a b

b

a

a

a

b

q1q0
start

q3q2

a, b

ba a

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1} {q0, q2}

→

start
q0 q1 q3q2

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1} {q0, q2}

q3

→

{q0}
{q0, q1,

q3}
start

{q0, q1}

{q0, q2}

b
a b

b

a

a

a

b

a, b

ba a

start
q0 q1 q3q2

State a b
{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
{q0, q2} {q0, q1, q3} {q0}
{q0, q1, q3} {q0, q1} {q0, q2}

q3

*

→

{q0}
{q0, q1,

q3}
start

{q0, q1}

{q0, q2}

b
a b

b

a

a

a

b

a, b

ba a

{q0}
{q0, q1,

q3}
start

{q0, q1}

{q0, q2}

b
a b

b

a

a

a

b

start
q0 q1 q3q2

a, b

ba a

{q0}

a b a a b a

{q0, q1,

q3}
start

{q0, q1}

{q0, q2}

b
a b

b

a

a

a

b

start
q0 q1 q3q2

a, b

ba a

{q0}

a b a a b a

{q0, q1,

q3}
start

{q0, q1}

{q0, q2}

b
a b

b

a

a

a

b

start
q0 q1 q3q2

a, b

ba a
q0

{q0}

{q0}

start
q0 q1 q3q2

{q0, q1,

q3}
start

{q0, q1}

{q0, q2}

q0

{q0}

b
a b

b

a

a

a

b

a b a a b a

a, b

ba a

start
q0 q1 q3q2q0

{q0, q1,

q3}
start {q0}

{q0, q1}

{q0, q2}

{q0, q1}

q1

b
a b

b

a

a

a

b

a b a a b a

a, b

ba a

{q0, q1,

q3}
start {q0}

{q0, q1}

{q0, q2}{q0, q2}

b
a b

b

a

a

a

b

a b a a b a

start
q0 q1 q3q2

a, b

ba a
q0 q2

start
q0 q1 q2q0 q1 q3

{q0, q1,

q3}
start {q0}

{q0, q1}

{q0, q2}

b
a b

b

a

a

a

b

a b a a b a

a, b

ba a

q1q1
start

q0 q3q2q0

{q0, q1,

q3}
start {q0}

{q0, q1}

{q0, q2}

{q0, q1}b
a b

b

a

a

a

b

a b a a b a

a, b

ba a

start
q0 q1 q3q2q0 q2

{q0, q1,

q3}
start {q0}

{q0, q1}

{q0, q2}{q0, q2}

b
a b

b

a

a

a

b

a b a a b a

a, b

ba a

q0q0

{q0, q1,

q3}

start
q1 q2

start {q0}

{q0, q1}

{q0, q2}

q1 q3

b
a b

b

a

a

a

b

a b a a b a

a, b

ba a

This method of transforming an NFA for a language
L into a DFA for L is called the subset construction.

Each state in the DFA corresponds to a set of states in the NFA.

The start state in the DFA corresponds to the start state of the NFA.

The accept states in the DFA correspond to the sets of states that
would be considered to accept in the NFA when using the massive
parallelism intuition.

If a state q in the DFA corresponds to a set of states S in the NFA,
then the transition from state q on a character α is found as follows:

Let S′ be the set of states in the NFA that can be reached by
following a transition labeled α from any of the states in S.

The state q in the DFA transitions on α to a DFA state
corresponding to the set of states S′.

Introduced by
Rabin & Scott,
1959

https://ieeexplore.ieee.org/document/5392601
https://ieeexplore.ieee.org/document/5392601

In converting an NFA to a DFA, the DFA’s states
correspond to sets of NFA states.

Useful fact: |℘(S)| = 2|S| for any finite set S.

In the worst case, the construction can result in a
DFA that is exponentially larger than the original NFA.

A language L is called a regular language if there
exists a DFA D such that L(D) = L.

THEOREM Every nondeterministic finite automaton has
an equivalent deterministic finite automaton.

PROOF Let N = (Q, Σ, δ, q0, F) be an NFA recognizing
some language A.

We can construct a DFA D = (Qʹ, Σ, δʹ, q0ʹ, Fʹ) that
recognizes A:

Qʹ = ℘(Q)

q0ʹ = {q0}

Fʹ = {R ∈ Qʹ | R contains an accept state of N}

For R ∈ Qʹ and α ∈ Σ, we define

Every state R of D is a set of states of N.

When D is in state R and reads a symbol α, it tracks where N
would go on α each state in R.

As in Sipser, we’re using R both
as a state of D and as a set
of states of N.

Ə′(5� ƌ) =
⋃

U∈ 5

Ə(U� ƌ)

�

Wait… What about
NFAs with ε-transitions?

q1
start

q0

b

a

q3

q2

b

q4

ε

Σ

Σ

start
q0

b

q1
a

q3

q2

b

q4

ε

State a b

It’ll be easier for us to represent the
equivalent DFA as a table rather than a
(big, messy) diagram.

Σ

Σ

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b

Let’s start off by thinking what the
start state of our DFA is going to be.

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b

q0

Let’s start off by thinking what the
start state of our DFA is going to be.

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b

q0

Let’s start off by thinking what the
start state of our DFA is going to be.

q3

q3q3

start
q0

b

q1
a

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3}

q0

→

The start state of the NFA includes the
start state q0 of the DFA and q3 since
you can get to q3 from q0 by an
ε-transition.

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3}

q0

→

b

a

b

q3

Σ

Σ

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3}

q0

→

b

a

b

q3

Σ

Σ

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3}

q0

→

b

a

b

q3

Σ

Σ

q4

q1q1

q4

start
q0

b

a

q3

q2

b

ε

Σ

Σ

State a b
{q0, q3}→

q4

q1q1

q4

start
q0

b

a

q3

q2

b

ε

Σ

Σ

State a b
{q0, q3}→

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4}

q1

q4

→

b

a

bΣ

Σ

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4}→

b

a

bΣ

Σ

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4}

q0

q3

→

b

a

bΣ

Σ

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4}

q0

q3

→

b

a

bΣ

Σ

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4}

q0

q3

→

b

a

bΣ

Σ

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4}

q4

→

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4}

q4

→

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}

q4

→

State a b
{q0, q3} {q1, q4} {q4}→

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

q1

q4

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4}

→

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4}

→

q1

q4

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4}

→

q1

q4

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4}

→

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅

→

b

a

bΣ

Σ

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅

→

b

a

b

A few steps later…

Σ

Σ

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3}

→q2

q3

start
q0

b

q1
a

q3

q2

b

q4

ε

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3}

→q2

q3

q3q3

start
q0 q1

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3}

→

b

a

b

q2

Σ

Σ

start
q0 q1

q3

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3}

→

b

a

b

q0

q4

Σ

Σ

q3q3

start
q0 q1

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3}

→

b

a

b

q4

q0

Σ

Σ

q3q3

start
q0 q1

q2

q4

ε

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}

→

b

a

b

q4

q0

Σ

Σ

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}start

q0 q1

q3

q2

q4

ε
A few steps later…

→

b

a

bΣ

Σ

start
q0 q1

q3

q2

q4

ε

→

b

a

b

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}
{q3} {q4} {q4}
{q0, q3, q4} {q1, q4} {q3, q4}
{q3, q4} {q4} {q3, q4}

What row is missing?

Σ

Σ

→

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}
{q3} {q4} {q4}
{q0, q3, q4} {q1, q4} {q3, q4}
{q3, q4} {q4} {q3, q4}
 ∅

start
q0 q1

q3

q2

q4

ε

b

a

bΣ

Σ

→

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}
{q3} {q4} {q4}
{q0, q3, q4} {q1, q4} {q3, q4}
{q3, q4} {q4} {q3, q4}
 ∅ ∅ ∅

start
q0 q1

q3

q2

q4

ε

b

a

bΣ

Σ

→

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}
{q3} {q4} {q4}
{q0, q3, q4} {q1, q4} {q3, q4}
{q3, q4} {q4} {q3, q4}
 ∅ ∅ ∅

start
q0 q1

q3

q2

q4

ε

b

a

bΣ

Σ

q3

q1

→

State a b
{q0, q3} {q1, q4} {q4}
{q1, q4} ∅ {q2, q3}
{q4} ∅ {q3}
{q2, q3} {q0, q3, q4} {q0, q3, q4}
{q3} {q4} {q4}
{q0, q3, q4} {q1, q4} {q3, q4}
{q3, q4} {q4} {q3, q4}
 ∅ ∅ ∅

start
q0 q1

q3

q2

q4

ε

b

a

bΣ

Σ

*
*

*
*
*
*

Creating a DFA from an
NFA with ε-transitions
1 Compute the ε-closure for each state, i.e., the set of

states reachable from that state following only
ε-transitions.

2 The start state is the ε-closure of q0, i.e., E({q0})

3 Define δ for each α ∈ Σ and each ε-closed set S:

If a state p ∈ S can reach state q on input α (not ε!),
then add a transition on input α from S to E(q)

4 The set of accept states for the DFA now includes those
sets that contain at least one accept state of the
NFA.

Convert this NFA to a DFA.

Exercise

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

→

State

{q0, q1, q6}

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} E({q2, q7})

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5}

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} E({q4})

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}
{q4, q5}

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}
{q4, q5} ∅

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3

Compute transitions, using ε-closure E.

→

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}
{q4, q5} ∅

∅ ∅

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

Step 4

Accept states

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

Step 3

Compute transitions, using ε-closure E.

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}
{q4, q5} ∅

∅ ∅

→

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state

Step 4

Accept states

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

State a

{q0, q1, q6} {q2, q3, q7, q5}
{q2, q3, q7, q5} {q4, q5}
{q4, q5} ∅

∅ ∅

Step 3

Compute transitions, using ε-closure E.

*
*

→

Step 1

E({q0}) = {q0, q1, q6}
E({q1}) = {q1}
E({q2}) = {q2, q3}
E({q3}) = {q3}
E({q4}) = {q4, q5}
E({q5}) = {q5}
E({q6}) = {q6}
E({q7}) = {q7, q5}

Step 2

Start state: E({q0}) = {q0, q1, q6}

Step 3

δ({q0, q1, q6}, a)	 = E({q2, q7})	 = {q2, q3, q7, q5}
δ({q2, q3, q7, q5}, a)	 = E({q4})	 = {q4, q5}
δ({q4, q5}, a)	 = ∅

δ(∅)	 = ∅

Step 4

F = { {q2, q3, q7, q5}, {q4, q5} }

q0

q1 q2 q3 q4

q5

q6 q7

ε

ε

ε
ε

ε

a a

a

start

This is the same
process shown
without using a
table.

{q0, q1,
q6}

{q2, q3,
q7, q5}

{q4, q5}
aa

∅
a

a

start

This method of transforming an NFA into a DFA is
called the subset construction.

Each state in the DFA corresponds to a set of states in the NFA.

The start state in the DFA corresponds to the start state of the NFA,
plus all states reachable via ε-transitions.

The accept states in the DFA correspond to the sets of states that
would be considered to accept in the NFA when using the massive
parallel intuition.

If a state q in the DFA corresponds to a set of states S in the NFA, then
the transition from state q on a character α is found as follows:

Let S′ be the set of states in the NFA that can be reached by following
a transition labeled α from any of the states in S.

Let S′′ be the set of states in the NFA reachable from some state in S′ by
following zero or more ε-transitions.

The state q in the DFA transitions on α to a DFA state corresponding
to the set of states S′′.

Now with
ε-transitions!

a.k.a., power set
construction

Wrap-up

A language is called a regular language if there exists
a DFA D such that L(D) = L.

THEOREM A language L is regular if and only if there
is some NFA N such that L(N) = L.

PROOF SKETCH If L is regular, there exists some DFA
for it, which we can easily convert into an NFA.

If L is recognized by some NFA, we can use the
subset construction to convert it into a DFA that
recognizes the same language, so L is regular.

We now have two perspectives on regular
languages:

Regular languages are languages recognized by DFAs.

Regular languages are languages recognized by NFAs.

We can now reason about regular languages in two
different ways, and we can use whichever model is
more convenient.

This lecture incorporates material from:
Nancy Ide, Vassar College

Keith Schwarz, Stanford University

Michael Sipser, Introduction to the Theory of Computation

Jeffrey Ullman, Stanford University

