Topics

1 Language theory

- Definitions of alphabet, string, and language
- Describe a languages using set-builder notation
- Understand the effect of concatenation, Kleene star, and union on strings and as operators on languages
- Know the difference between \emptyset and ε

2 Deterministic finite automata

- Design a DFA for a given language
- Describe the language recognized by a given DFA
- Represent a DFA as a state transition diagram, a table, or a 5-tuple
- Understand the transition function δ, which needs to be defined for every input symbol in every state
- Understand the essence of DFAs: finite memory

3 Nondeterministic finite automata

- Understand nondeterministic computation: Accept if there is any accepting computation
- Computation with ε-transitions
- Design simple NFAs by embracing nondeterminism: guess and check!
- Use the subset construction with ε-closure to convert an NFA to an equivalent DFA

4 Regular expressions

- Recursive definition of regular expressions
- Precedence of the operators in a regular expression (\ast, concatenation, \cup)
- Describe the language of a given a regular expression
- Use the state elimination method to convert a DFA to an equivalent regular expression
- Use Thompson’s algorithm to convert a regular expression to an equivalent NFA
5 The Pumping Lemma

- Understand the intuition of the Pumping Lemma:
 If a string \(w \) is accepted by some \(M \) and \(w \) is as long or longer than the number of states, then \(w \) must “loop” back to some state \(M \) en route to accept. Therefore, we can eliminate (pump 0 times) or repeat (pump 1 or more times) the segment of \(w \) that labels the loop to obtain new accepted strings.

- Use the Pumping Lemma to prove that a given language is not regular

- Know that the Pumping Lemma is a necessary but not sufficient condition for regular languages; you cannot use the Pumping Lemma to prove a language is regular.

6 Closure properties of regular languages

- Understand the proofs that regular languages are closed under the union, concatenation, Kleene star, complement, and intersection

- Use closure properties to prove that a language is regular
 \(L \) is regular if you can find known regular languages \(L_1 \) and \(L_2 \) such that \(L = L_1 \) – \(L_2 \) since regular languages are closed under difference.

- Use closure properties to prove that a language is not regular.
 By contradiction. Show that if \(L \) were regular, by applying closure properties, we could obtain a known non-regular language \(L' \) from \(L \) (and perhaps other regular languages), and therefore we can \(L \) must be non-regular.
Problem 1

Give short answers to each of the following. Be sure to adequately explain your answers for full credit.

a. Give an example of a regular language R and a non-regular language N, such that $R \cap N$ is a regular language.

b. True or false: If an NFA with n states accepts no string with length less than n, then it must accept no strings at all.

c. Let Σ be an alphabet. Give a short English description of the set $\mathcal{P}(\Sigma^*)$. Briefly justify your answer.

I think there's a single “best answer” – you should be able to describe the set in at most ten words.
Problem 2

Let $\Sigma = \{a,b\}$ and let L be the language over Σ given by the regular expression $(ab \cup ba)^*$. Design a DFA for L.

You can design the DFA directly; you don't need to use Thompson's algorithm to construct an NFA and then convert it to a DFA.
Problem 3

Let $\Sigma = \{d, f, j, o, r\}$ and consider the following language L:

$L = \{w \in \Sigma^* \mid w$ is a substring of fjord $\}.$

Recall that a substring is a contiguous range of characters from a string. For example, $fjo \in L$, $jord \in L$, $\varepsilon \in L$, $f \in L$, and $fjord \in L$, but $dor.f \notin L$ since the letters are contiguous, and $fff \notin L$ because there aren't three consecutive fs in fjord.

Design an NFA for L.
Problem 4

Let M be the NFA below. The input alphabet is \{a, b, c\}.

Use the subset construction to create a deterministic finite automaton that is equivalent to M. Show your steps.
Problem 5

Convert the following NFA into an equivalent regular expression using the state elimination method.

Step 1 (add new start and final states)

Step 2 (after q_0 removed)

Step 3 (after q_1 removed)

Step 4 (after q_2 removed) = Resulting regular expression
Problem 6

For each language, prove whether it is a regular language. If you say it is regular, give a DFA, NFA, or regular expression for L. If you say it is not regular, prove this using the Pumping Lemma for regular languages and/or closure properties.

a. \[L = \{a^m b^m a^n b^n \mid m, n \geq 0\} \]

b. \[L = \{a^n \mid n \text{ is a multiple of 8}\} \]

c. \[L = \{x=y+z \mid x, y, z \text{ are binary integers and } x \text{ is the sum of } y \text{ and } z\} \] The alphabet is $\Sigma = \{0, 1, =, +\}$; an example string is $1011=101+110$.

Problem 7

Write regular expressions for the following languages over $\Sigma = \{a, b\}$.

a. $\{w \in \Sigma^* \mid w \neq \varepsilon \text{ and the first and last character of } w \text{ are the same}\}$

b. $\{w \in \Sigma^* \mid w \neq \varepsilon \text{ and } w \text{'s characters alternate between as and bs}\}$