Problem 1

Give short answers to each of the following. Be sure to adequately explain your answers for full credit.

a. Give an example of a regular language R and a non-regular language N, such that $R \cap N$ is a regular language.

$$R = ab^*$$
$$N = \{a^n b^n \mid n \geq 0\}$$
$$R \cap N = \{ab\}$$

b. True or false: If an NFA with n states accepts no string with length less than n, then it must accept no strings at all.

True. Suppose that the NFA accepts some string. Then there is a path from the start state to a final state. This implies that there is a simple path (in which every state appears at most once) from the start state to the final state. (A simple path is obtained by removing loops.) A simple path can contain at most n nodes and therefore at most $n-1$ transitions. Therefore, a simple path defines an accepted string with length at most $n-1$. If no such string exists in $L(M)$, then the NFA accepts no strings at all, since it must be possible to take at least one simple path to a final state.

c. Consider this statement: “If L_1 is a regular language and $L_1 \cup L_2$ is also regular, then L_2 must be regular.”

True or false: If the statement were true for all L_1 and L_2, then all languages would be regular.

True. Let $L_1 = \Sigma^*$, which is clearly regular because it is denoted by the regular expression Σ^*. Let L_2 be any language. By the definition of a language, $L_2 \subseteq L_1$. Therefore, $L_1 \cup L_2 = L_1$ and, hence, is regular. Since L_2 is any arbitrary language, we would have that all languages are regular.

The statement itself is clearly false though. Let $L_1 = \Sigma^*$, $L_2 = \{a^n b^n \mid n \geq 0\}$. Then L_1 is regular, and $L_1 \cup L_2 = L_1$ is regular, but we know L_2 is not regular, disproving the statement.
Problem 2

Let M be the NFA-ϵ below. The input alphabet is $\{a, b, c\}$.

Using the method described in the book and in class, construct a deterministic finite automaton that is equivalent to M. Show your steps.

First compute the ϵ-closure for each state of the NFA:

$E(\{p\}) = \{p\}$
$E(\{q\}) = \{p, q\}$
$E(\{r\}) = \{p, q, r\}$

Then compute the transition function δ:

$\delta(\{p\}, a) = E(\{p\}) = \{p\}$
$\delta(\{p\}, b) = E(\{q\}) = \{p, q\}$
$\delta(\{p\}, c) = E(\{r\}) = \{p, q, r\}$
$\delta(\{p, q\}, a) = E(\{p, q\}) = E(\{p\}) \cup E(\{q\}) = \{p, q\}$
$\delta(\{p, q\}, b) = E(\{q, r\}) = E(\{q\}) \cup E(\{r\}) = \{p, q, r\}$
$\delta(\{p, q\}, c) = E(\{r\}) = \{p, q, r\}$
$\delta(\{p, q, r\}, a) = E(\{p, q, r\}) = E(\{p\}) \cup E(\{q\}) \cup E(\{r\}) = \{p, q, r\}$
$\delta(\{p, q, r\}, b) = E(\{q, r\}) = \{p, q, r\}$
$\delta(\{p, q, r\}, c) = E(\{p, r\}) = \{p, q, r\}$
This gives us the DFA:
Problem 3

Convert the following NFA-ε into an equivalent regular expression using the technique shown in class and on pages 72–76 of our book. For Step 1, add a new start and final state. For Steps 2–5, show the graph after removal of q₀, q₁, and q₂ (in that order). You must show each step of the conversion and label each arc in each transition graph for full credit.

Step 1 (add new start and final states)

Step 2 (after q₀ removed)

Step 3 (after q₁ removed)

Step 4 (after q₂ removed) = Resulting regular expression

$S \rightarrow a^* (ba^*)^* ba^*$
Problem 4

Using the construction method in the proof of Kleene’s theorem in your book, construct a nondeterministic finite automaton that accepts the language \(((a \cup b)(a \cup b)^*)^*\).

Note that this is a different construction for Kleene star than is used by Sipser. Either way is fine.
NFA for \((a \cup b)(a \cup b)^*a\)

NFA for \(((a \cup b)(a \cup b)^*)^*\)
Problem 5

For each language, prove whether it is a regular language. If you say it is regular, give a DFA, NFA, or regular expression for \(L \). If you say it is not regular, prove this using the Pumping Lemma for regular languages and/or closure properties.

a. \(L = \{ a^m b^m a^m b^m \mid m, n \geq 0 \} \).

 Non-regular. We show it does not satisfy the Pumping Lemma. Let \(p \) be the number from the Pumping Lemma for \(L \). Consider the string \(a^p b^p a^p b^p \). Because \(|xy| \leq p \), \(y \) must be all As. Therefore \(xy^2z \) will have at least one more \(a \) at the beginning of the string than there are \(b \)s at the end. The resulting string is not in the language, and therefore \(L \) cannot be regular.

b. \(L = \{ a^n \mid n \text{ is a multiple of 8} \} \)

 Regular. \((aaaaaaa)^*\) is a regular expression for \(L \).

c. \(L = \{ x = y + z \mid x, y, z \text{ are binary integers and } x \text{ is the sum of } y \text{ and } z \} \). The alphabet is \(\Sigma = \{ 0, 1, =, + \} \); an example string is \(1011 = 101 + 110 \).

 Non-regular. We show it does not satisfy the Pumping Lemma. Let \(n \) be the number from the Pumping Lemma for \(L \). Consider the string \(1^n = 1^n + 0^n \). Because \(|xy| \leq n \), \(y \) must be all \(1 \)s. Choose \(i = 0 \). \(xy^i z = 1^n-|y|1^n + 0^n \notin L \) because \(|y| > 0 \), yielding more \(1 \)s on the left side of the equal sign than the right. Contradiction, so \(L \) is not regular.
Problem 6

Let $\Sigma = \{a, b\}$. Give a regular expression for the set of all strings in Σ^* with exactly one occurrence of the substring aaa.

$$(b \cup ab \cup aab)^*aaa(b \cup ba \cup baa)^*$$

The trick is to make sure that more than two as do not have the opportunity to ever get next to each other, with the exception of the central aaa.
