Problem 1

Provided below is a Turing machine for the language \(\{a^n b^n \mid n \in \mathbb{N}_0\} \). Note that \(B \) is being used for a blank, and the input alphabet is \(\{a, b\} \).

Modify the above to create a TM for the language \(\{a^n b^{2n} \mid n \in \mathbb{N}_0\} \), and draw a diagram for the resulting TM.

Answer (without redrawing the diagram):

Add a new state, \(q_5 \), to handle erasing an extra \(b \) for each \(a \). The transition from \(q_2 \) to \(q_3 \) is deleted, and two new transitions are added: \(\delta(q_2, b) = (q_5, B, L) \) and \(\delta(q_5, b) = (q_3, B, L) \).

Problem 2

Each of the “proofs” below claims to prove a conjecture. The conjectures might be true or false, but both of the proofs are bad. For each proof, explain clearly why the provided proof does not satisfactorily prove the given conjecture. Your answer should identify a fundamental flaw in the proof (for example, by explaining what it actually proves instead of the conjecture), not a minor issue like lack of sufficient detail.

a. Conjecture: The “BusyBee” language, defined below, is undecidable:

\[L_{\text{BusyBee}} = \{ (M, w, k) \} \], where \(M \) describes a Turing machine and \(k \) is the number of different states \(M \) enters before halting on input \(w \). (Note that \(q_{\text{accept}} \) and \(q_{\text{reject}} \) are counted toward this total.)
Proof by reduction: We prove that $L_{BusyBee}$ is undecidable by reducing $HALT_{TM}$ to it. Construct $M_{BusyBee}$ given a machine M_{HALT} that decides $HALT_{TM}$.

$M_{BusyBee} =$

Simulate M_{HALT} on input (M, w). If M_{HALT} accepts, simulate M on w. On a second tape, list the states of M and add a mark on each state that is entered. Count the number of marked states on the second tape. If the number matches k, accept. Otherwise, reject (without simulating M on w since it does not halt). Since building $M_{BusyBee}$ requires M_{HALT}, which we know does not exist, this proves that $L_{BusyBee}$ is undecidable.

Answer:

The proof does the reduction in the wrong direction. It shows that you can decide $L_{BusyBee}$ if you can decide $HALT_{TM}$ (that is, that $L_{BusyBee}$ is not harder than $HALT_{TM}$), but it does not show the conjecture, which is that $L_{BusyBee}$ is undecidable. To show that, we would need a reduction that shows how to solve $HALT_{TM}$ if you were given a machine that can solve $L_{BusyBee}$.

b. **Conjecture:** The set of languages that can be recognized by a deterministic pushdown automaton is equivalent to the set of languages that can be recognized by a Turing machine.

Proof by simulation: We prove the conjecture by showing how to simulate any DPDA with a TM… (unnecessary details elided) … Thus, we can simulate a DPDA with a TM. This proves a DPDA is equivalent to a TM.

Answer:

The proof only covers one direction: It shows a DPDA can be simulated by a TM. To show the sets of languages they recognize are equivalent, we need to show both directions. (In this case, this would be impossible, since it's not possible for a DPDA to simulate a TM.) Hence, what is actually proven here is that a DPDA is no more powerful than a TM, which is not surprising since the set of languages that can be recognized by a DPDA is a subset of the Turing-recognizable languages.
Problem 3

Consider the Turing machine \(M = (\{q_0, q_1, q_f\}, \{0, 1\}, \{0, 1, \square\}, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \), where \(\delta \) consists of the following rules:

\[
\begin{align*}
\delta(q_0, 0) &= (q_0, \square, R) \\
\delta(q_0, 1) &= (q_1, \square, R) \\
\delta(q_1, 1) &= (q_1, \square, R) \\
\delta(q_1, \square) &= (q_{\text{accept}}, \square, R) \\
\delta(q_1, 0) &= (q_{\text{reject}}, \square, R)
\end{align*}
\]

a. Informally but clearly describe the language \(L(M) \).

Answer:

\(L(M) = \{0^* 1^+\} \), that is, the language consisting of zero or more 0s followed by at least one 1s.

b. Give a string in this language that is of length at least 4, and show the sequence of moves of this TM when this string is the input to \(M \).

Answer:

Consider the string \(s = 0111 \). The following sequence of moves recognizes \(s \):

\[
q_00111 \\
\square q_0111 \\
\square \square q_111 \\
\square \square \square q_1 \\
\square \square \square \square q_{\text{f}}
\]
Problem 4

Answer each of the following as indicated.

a. Indicate whether the following is true or false and fully justify your answer: If language A is a subset of language B, and A is Turing-recognizable, then B is Turing-recognizable.

Answer:

False. Let $A = \emptyset$, the empty set. Then A is Turing-recognizable – it’s accepted by a TM that rejects everything – but $A \subseteq B$ for any language B. But we know that there are languages that are not Turing-recognizable.

b. Indicate whether the following is true or false and fully justify your answer: A nondeterministic TM accepts a string w if and only if every possible computation on the input leads to an accepting state.

Answer:

False. A non-deterministic TM accepts w if at least one computation on w leads to an accepting state.

c. Indicate whether the following is true or false and fully justify your answer: The computational path of a TM on an input w always either halts accepting, halts rejecting, or enters a never-halting loop.

Answer:

True. The only two ways for a TM to halt are by accepting and rejecting. If the TM does not reject or accept, it never halts, i.e., enters a never-halting loop.

d. Circle the number to the left of each of the languages below that is Turing-decidable but not context-free:

1. $\{wcw \mid w \in \{a, b\}^*\}$
2. $\{a^{2n}b^n c^{2n} \mid n \in \mathbb{N}_0\}$

e. Circle the number to the left of each of the languages below that is Turing-recognizable but not Turing-decidable:

1. $\{\langle M, w \rangle \mid TM M \text{ accepts input } w\}$
2. $\{\langle M \rangle \mid L(M) \neq \emptyset\}$

f. Circle the number to the left of each of the languages below that is not Turing-recognizable:

1. $\{\langle M_1, M_2 \rangle \mid L(M_1) \cap L(M_2) = \emptyset\}$
Problem 5

Determine whether the following problems are decidable or not:

a. Is a number m prime?

 Answer:

 This problem is decidable because there is an algorithm which, after a \textit{finite number of steps}, will halt and give us a definitive answer to the question. Here is the algorithm:

 On input m:

 1. Divide the number m by all the numbers between 2 and \sqrt{m}, starting from 2.
 2. If any of these numbers produces a remainder zero, \textit{reject}.
 3. Otherwise, \textit{accept}.

 The algorithm is guaranteed to halt with a definitive “yes” or “no” answer because the set of numbers between 2 and \sqrt{m} is finite and therefore bounded.

b. Given a regular language L and a string w, is $w \in L$?

 Answer:

 Construct a \textit{dfa} that accepts L and check if w is accepted. The algorithm is guaranteed to terminate in a finite number of steps – namely, $|w|$ since it must read an input character each time – and give a “yes” or “no” answer depending on whether it is in a final state at the end of the computation. So this problem is decidable.

Problem 6

Prove that the language $L = \{\langle M \rangle \mid M$ is a TM and M accepts string w whenever it accepts $w^R\}$ is undecidable.

Answer:

As usual, we assume that L is decidable, and we let M_L be the Turing machine that decides L. We’re going to construct a TM that uses M_L to decide A_{TM}. Since A_{TM} is known to be undecidable, this leads to a contradiction, proving that L is undecidable.

The decider for A_{TM} can be built as follows:

$M_{ATM} =$ “on input $\langle M, w \rangle$:

1. Construct the code for the following Turing machine M_1: $M_1 =$ “on input x:

 a. Simulate M on w.

 b. If M rejects w, \textit{reject}.

 c. If M accepts w, \textit{accept} if $x = \text{01}$; otherwise, \textit{reject}.”

2. Simulate M_L on input $\langle M_1 \rangle$.
3 If M_L rejects, accept; otherwise, reject.”

The key point is this: What is the language of M_1? When M accepts w, $L(M_1) = \{01\}$, which is not in L, since it doesn’t include 10. When M rejects w, $L(M_1) = \emptyset$, which is in L.