Problem 1

Give short answers to each of the following. Be sure to adequately explain your answers for full credit.

a. Give an example of a regular language \(R \) and a non-regular language \(N \), such that \(R \cap N \) is a regular language.

\[
R = ab^* \\
N = \{a^n b^n \mid n \geq 0\} \\
R \cap N = \{ab\}
\]

b. True or false: If an NFA with \(n \) states accepts no string with length less than \(n \), then it must accept no strings at all.

True. Suppose that the NFA accepts some string. Then there is a path from the start state to a final state. This implies that there is a simple path (in which every state appears at most once) from the start state to the final state. (A simple path is obtained by removing loops.) A simple path can contain at most \(n \) nodes and therefore at most \(n - 1 \) transitions. Therefore, a simple path defines an accepted string with length at most \(n - 1 \). If no such string exists in \(L(M) \), then the NFA accepts no strings at all, since it must be possible to take at least one simple path to a final state.

c. Consider this (false) claim: “If \(L_1 \) is a regular language and \(L_1 \cup L_2 \) is also regular, then \(L_2 \) must be regular”.

True or false: If the claim were true for all \(L_1 \) and \(L_2 \), then all languages would be regular.

True. Let \(L_1 = \Sigma^* \), which is clearly regular because it is denoted by the regular expression \(\Sigma^* \). Let \(L_2 \) be any language. By the definition of a language, \(L_2 \subseteq L_1 \). Therefore, \(L_1 \cup L_2 = L_1 \) and, hence, is regular. Since \(L_2 \) is any arbitrary language, we would have that all languages are regular.

The statement itself is clearly false though. Let \(L_1 = \Sigma^* \), \(L_2 = \{a^n b^n \mid n \geq 0\} \). Then \(L_1 \) is regular, and \(L_1 \cup L_2 = L_1 \) is regular, but we know \(L_2 \) is not regular, disproving the statement.
Problem 2

Let M be the NFA-ε below. The input alphabet is $\{a, b, c\}$.

Using the method described in the book and in class, construct a deterministic finite automaton that is equivalent to M. Show your steps.

First compute the ε-closure for each state of the NFA:

$E(\{p\}) = \{p\}$
$E(\{q\}) = \{p, q\}$
$E(\{r\}) = \{p, q, r\}$

Then compute the transition function δ:

$\delta(\{p\}, a) = E(\{p\}) = \{p\}$
$\delta(\{p\}, b) = E(\{q\}) = \{p, q\}$
$\delta(\{p\}, c) = E(\{r\}) = \{p, q, r\}$
$\delta(\{p, q\}, a) = E(\{p, q\}) = E(\{p\}) \cup E(\{q\}) = \{p, q\}$
$\delta(\{p, q\}, b) = E(\{q, r\}) = E(\{q\}) \cup E(\{r\}) = \{p, q, r\}$
$\delta(\{p, q\}, c) = E(\{r\}) = \{p, q, r\}$
$\delta(\{p, q, r\}, a) = E(\{p, q, r\}) = E(\{p\}) \cup E(\{q\}) \cup E(\{r\}) = \{p, q, r\}$
$\delta(\{p, q, r\}, b) = E(\{q, r\}) = \{p, q, r\}$
$\delta(\{p, q, r\}, c) = E(\{p, r\}) = \{p, q, r\}$
This gives us the DFA:
Problem 3

Convert the following NFA-ε into an equivalent regular expression using the technique shown in class and on pages 72–76 of our book.

Step 1 (add new start and final states)

Step 2 (after \(q_0\) removed)

Step 3 (after \(q_1\) removed)

Step 4 (after \(q_2\) removed) = Resulting regular expression
Problem 4

Using the construction method in the proof of Kleene’s theorem in the textbook, construct a nondeterministic finite automaton that accepts the language \(((a \cup b)(a \cup b)^{*}a)^{*}\).

Note that this is a different construction for Kleene star than is used by Sipser. Either way is fine.
NFA for \((a \cup b)(a \cup b)^* a\)

NFA for \(((a \cup b)(a \cup b)^*)^*\)
Problem 5

For each language, prove whether it is a regular language. If you say it is regular, give a DFA, NFA, or regular expression for \(L \). If you say it is not regular, prove this using the Pumping Lemma for regular languages and/or closure properties.

a. \(L = \{a^m b^n a^m b^n \mid m, n \geq 0\} \).

Non-regular.

We can use the Pumping Lemma to prove \(L \) is not regular:

By contradiction; assume that \(L \) is regular. Let \(p \) be the length guaranteed by the Pumping Lemma. Consider the string \(w = a^p b^p a^p b^p \). Then \(|w| = 4p \geq p \) and \(w \in L \). Therefore, there exist strings \(x, y, \) and \(z \) such that \(w = xyz \), \(|xy| \leq p\), and \(y \neq \varepsilon \), and for any non-negative integer \(i \), \(xy^i z \in L \).

Since \(|xy| \leq p\), \(y \) must consist solely of \(a \)'s. But then \(xy^2 z = a^{p+|y|} b^p a^p b^p \), and since \(|y| > 0\), we know \(xy^2 z \) will have at least one more \(a \) at the beginning of the string than there are \(b \)'s at the end. Therefore, \(xy^2 z \notin L \).

We have reached a contradiction, so our assumption was wrong, and \(L \) is not regular. \(\blacksquare \)

Or we can use closure properties to transform \(L \) into a known non-regular language:

\[L \cap a^* b^* = \{a^i b^j \mid i \geq 0\} \]

\(a^* b^* \) is a regular language because it’s written as a regular expression.

Taking the intersection with a regular language preserves regularity, so if \(L \) is regular, then \(\{a^i b^j \mid i \geq 0\} \) is regular, but we’ve proven using the Pumping Lemma that this is a non-regular language.

Therefore, \(L \) must not be a regular language.

b. \(L = \{a^n \mid n \text{ is a multiple of } 8\} \)

Regular.

A regular expression for \(L \) is:

\((aaaaaa)^* \)

c. \(L = \{x=y+z \mid x, y, z \text{ are binary integers and } x \text{ is the sum of } y \text{ and } z\} \). The alphabet is \(\Sigma = \{0, 1, =, +\} \); an example string is \(1011 = 101 + 110 \).
Non-regular.

We can prove it using the Pumping Lemma:

By contradiction; assume L is regular. Let n be the length guaranteed by the Pumping Lemma. Consider the string $w = 1^n=1^n+0^n$. Then $|w| = 3n + 2 \geq n$ and $w \in L$. Therefore, there exist strings $x, y, \text{ and } z$ such that $w = xyz$, $|xy| \leq n$, and $y \neq \varepsilon$, and for any non-negative integer i, $xy^iz \in L$.

Since $|xy| \leq n$, y must consist solely of 1s. But then $xy^0z = 1^n-|y|=1^n+0^n$, and since $|y| > 0$, we know xy^0z has more 1s on the right side of the equal sign than the left.

We have reached a contradiction, so our assumption was wrong, and L is not regular. ■
Problem 6

Let \(\Sigma = \{a, b\} \). Give a regular expression for the set of all strings in \(\Sigma^* \) with exactly one occurrence of the substring aaa.

\[
(b \cup ab \cup aab) \cdot aaa(b \cup ba \cup baa)^*
\]

The trick is to make sure that more than two a's do not have the opportunity to ever get next to each other, with the exception of the central aaa.