Regular expressions continued

Assignments:
- Assignment 1 due today, start of class.
- Assignment 2 out today, due in a week.

Exam I:
- Tentatively scheduled for Oct. 2 (two weeks from today)
- Survey: In-class vs take-home? Trade offs...

Last class:
- Introduced regular expressions.
- Began proving the equivalence of regular expressions and finite automata.

Today:
- Construct a regular expression for any finite automaton.
Regular expressions

DEFINITION. A regular expression R is said to be a regular expression if R is

1. a for some $a \in \Sigma$
2. ε
3. \emptyset
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions
5. $(R_1 \cdot R_2)$, where R_1 and R_2 are regular expressions
6. (R_1^*), where R_1 is a regular expression

Every regular expression arises by a finite number of applications of these six rules.

Equivalence of FA languages and RE languages

Regular expressions and finite automata have equivalent descriptive power.

We can convert any regular expression into a finite automaton that recognizes the language it describes — and vice versa.

Therefore, NFA-\(\varepsilon\), NFA, DFA, and RE are equivalent (describe the same languages)

Constructing an NFA-\(\varepsilon\) from a regular expression

Cover the six cases in the definition of REs:

1. $R = a$ for some $a \in \Sigma$. Then $L(R) = \{a\}$ and the following NFA recognizes $L(R)$
 $\begin{array}{c}
 \circ \xrightarrow{a} \bullet
 \end{array}$

2. $R = \varepsilon$
 $\begin{array}{c}
 \circ
 \end{array}$

 Formally, $N = ((q), \Sigma, \delta, q, \{q\})$, where $\delta(r, b) = \emptyset$ for all r and b

3. $R = \emptyset$
 $\begin{array}{c}
 \circ
 \end{array}$

 Formally, $N = ((q), \Sigma, \delta, q, \emptyset)$, where $\delta(r, b) = \emptyset$ for all r and b

The languages accepted by DFA, NFA, NFA-\(\varepsilon\), and described by RE are called the **regular languages**
4 \(R = (R_1 \cup R_2) \)
For two languages \(R_1 \) and \(R_2 \), take two NFAs \(N_1 \) and \(N_2 \) and combine them into one new NFA \(N \).
\(N \) must accept input if either \(N_1 \) or \(N_2 \) accepts input.

5 \(R = (R_1 \cdot R_2) \)
For two languages \(R_1 \) and \(R_2 \), take two NFAs \(N_1 \) and \(N_2 \) and combine them sequentially into one new NFA \(N \).

6 \(R = (R_1)^* \)
For a language \(R_1 \), modify \(N_1 \) to accept \((R_1)^*\).
Proof
We will prove this set of equivalences by

✓ Showing how to construct an NFA-\(\varepsilon\) from a regular expression

Showing how to construct a regular expression from a finite automaton

Constructing a regular expression from a finite automaton
Two algorithms:

State elimination: gives smaller expression, in general, and easier to apply.

Inductive construction: covered in the appendix slides.

DFA-to-RE by state elimination

Basic idea:

Eliminate a state \(s\) (i.e., remove all arcs into and out of \(s\))

Label arcs from \(q\) to \(p\) that went through \(s\) with a regular expression representing the sequence of symbols on that path.

Generalized nondeterministic finite automaton (GNFA)

An NFA where the transition arrows can have a regular expression as the label.

It can read blocks of symbols from the input rather than just one symbol at a time.

Used as an intermediate state in this proof by construction.
General process

- Remove state q_i
- Label new paths from
 - q_i to q_i
 - q_i to q_j
 - q_j to q_i
 - q_j to q_j

Alternative method

We can simplify things if we ensure the following before applying the procedure for state elimination:

- There is a single final state
- There are no transitions into the initial state
- There are no transitions out of the final state

Since the procedure works on NFA-εs, this is easy to do:

Procedure

Before

After

Example

Add new start and end state

Remove state 2

Remove state 1
STEP 1: Modify to create a unique start and end state:

STEP 2: Eliminate state 1
path from s to 2 is a^*b
path from 3 to 2 is aa^*b.

STEP 3: Eliminate state 2:
path from s to 3 is a^*bb^*a
path from s to f is a^*bb^*
path from 3 to f is $(b \cup aa^*b)b^*$
path from 3 to 3 is $(b \cup aa^*b)a$

STEP 4: Eliminate state 3:
label on the path from s to f yields the final regular expression:
Proof

We will prove this set of equivalences by

✓ Showing how to construct an NFA-ε from a regular expression
✓ Showing how to construct a regular expression from a finite automaton

The regular languages are recognized by NFA-εs, NFAs, DFAs, and REs (...and GNFAs)

What about languages that aren’t regular languages?
Next time!

Inductive construction

Let A be a FA with states 1, 2,… n.

Let $R_{ij}^{(k)}$ be a RE whose language is the set of labels of paths that go from state i to state j without passing through any state numbered above k.

Construction, and the proof that the expressions for these REs are correct, are inductions on k.

Appendix
Basis: \(k = 0 \). Path can’t go through any states.

Thus, path is either an arc or the null path (a single node).

If \(i \neq j \), then \(R_{ij}^{(0)} \) is the sum of all symbols \(a \) such that \(A \) has a transition from \(i \) to \(j \) on symbol \(a \) (\(\emptyset \) if none).

If \(i = j \), then add \(\varepsilon \) to above.

Induction: Assume we have correctly developed expressions for the \(R^{(k-1)} \)s. Then for the \(R^{(k)} \)s:

\[
R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^{*} R_{kj}^{(k-1)}
\]

Proof it works: A path from \(i \) to \(j \) that goes through no state higher than \(k \) either:

Never goes through \(k \), in which case the path’s label is (by the IH) in the language of \(R_{ij}^{(k-1)} \); or

Goes through \(k \) one or more times. In this case:

- \(R_{ik}^{(k-1)} \) contains the portion of the path that goes from \(i \) to \(k \) for the first time.
- \((R_{kk}^{(k-1)})^{*} \) contains the portion of the path (possibly empty) from the first \(k \) visit to the last.
- \(R_{kj}^{(k-1)} \) contains the portion of the path from the last \(k \) visit to \(j \).

Final step: The RE for the entire FA is the sum (union) of the RE’s \(R_{ij}^{(n)} \), where \(i \) is the start state and \(j \) is one of the accepting states.

Note that superscript \((n) \) represents no restriction on the path at all, since \(n \) is the highest-numbered state.
Example

The “clamping” automaton, with states named by integers:

\[
\begin{array}{ccc}
3 & \xrightarrow{1} & 1 \\
\xrightarrow{0} & 3 & \xrightarrow{1} \\
\end{array}
\]

Some basis expressions:

\[
\begin{align*}
R_{11}^{(0)} &= \varepsilon \\
R_{12}^{(0)} &= 1 \\
R_{22}^{(0)} &= \varepsilon + 0 + 1 \\
R_{21}^{(0)} &= 1 \\
R_{32}^{(0)} &= R_{21}^{(0)} = \emptyset
\end{align*}
\]

Two inductive examples:

\[
\begin{align*}
R_{32}^{(0)} &= R_{32}^{(0)} \cup R_{31}^{(0)} (R_{11}^{(0)}) \ast R_{12}^{(0)} = \emptyset \cup 1 \ast 1 = 11 \\
R_{22}^{(1)} &= R_{22}^{(0)} \cup R_{21}^{(0)} (R_{11}^{(0)}) \ast R_{12}^{(0)} = \emptyset \cup 0 \cup 1 \cup \emptyset \ast 1 = \emptyset \cup 0 \cup 1
\end{align*}
\]

Uses algebraic laws:

- \(\varepsilon\) is the identity for concatenation:
 \[
 \begin{align*}
 \varepsilon \ast \varepsilon &= \varepsilon \\
 R \varepsilon &= \varepsilon R = R
 \end{align*}
 \]

- \(\emptyset\) is the identity for union:
 \[
 \begin{align*}
 \emptyset \cup R &= R \cup \emptyset = R
 \end{align*}
 \]

Additional algebraic law used:

- \(\emptyset\) is the annihilator for concatenation:
 \[
 \begin{align*}
 \emptyset R &= R \emptyset = \emptyset
 \end{align*}
 \]