Previously:
Context-free grammars, for describing a more powerful class of languages

Today:
Pushdown automata for recognizing context-free languages.
Take-home Exam 1 due.

Then:
Assignment 4 out later today; due Tuesday after break.

Example of a CFG

- **A → aAb**
- **A → B**
- **B → ε**

- **Production rules**: substitutions
- **Non-terminals**: variable that can have a substitutions
- **Terminals**: symbols that are part of the alphabet, no substitutions
- **Start variable**: left side of top-most rule

Formal CFG Notation

- **Productions** = rules of the form \(\text{head} \rightarrow \text{body} \)
 - head is a variable
 - body is a string of zero or more variables and/or terminals
- **Start Symbol** = variable that represents “the language”
- **Notation**: \(G = (V, \Sigma, P, S) \)
 - \(V \) = variables
 - \(\Sigma \) = terminals
 - \(P \) = productions
 - \(S \) = start symbol
Pushdown Automata

- Add a stack to a FA
- Typically non-deterministic
- An automaton equivalent to CFGs

Schematic of a Finite Automaton

Schematic of a Pushdown Automaton

Notation

If at state p with next input symbol x and top of stack is y:
- go to state q and replace y by z on stack

- $x = \epsilon$: ignore input, don’t read
- $y = \epsilon$: ignore top of stack and push z
- $z = \epsilon$: pop y
Example

Notation for transition diagrams:
\[a, Z \rightarrow X_1X_2 \ldots X_k \]

- **Meaning**
 - On input \(a \), with \(Z \) on top of the stack
 - consume the \(a \)
 - make this state transition
 - replace the \(Z \) on top of the stack by \(X_1X_2 \ldots X_k \) (with \(X_1 \) at the top)

Formal PDA

\[P = (Q, \Sigma, \Gamma, \delta, q_0, F) \]

- \(Q, \Sigma, q_0 \), and \(F \) have their meanings from FA
- \(\Gamma = \text{stack alphabet} \)
- \(\delta = \text{transition function} \)
 \[\delta : Q \times \Sigma \times \Gamma \rightarrow P \times (Q \times \Gamma) \]
- Takes a state, input symbol (or \(\epsilon \)), and a stack symbol and gives you a finite number of choices of:
 1. A new state (possibly the same)
 2. A string of stack symbols (or \(\epsilon \)) to replace the top stack symbol

PDAs à la Sipser

- No intrinsic way to test for an empty stack
 - Get the same effect by initially putting a special symbol $ on the stack
 - Machine knows stack is empty if it sees $ during computation
- No intrinsic way to know when end of input string is reached
 - PDA achieves that effect because the accept state takes effect only when the machine is at the end of the input

N.B.: Different textbook authors use different conventions and notations

For \(ab^n \):

- \(q_1 \) = starting to see a group of as and bs
- \(q_2 \) = reading as and pushing as onto the stack
- \(q_3 \) = reading bs and popping as until the as are all popped
- \(q_4 \) = no more input and empty stack; accept

$ is a special "bottom of stack" symbol

$ is a special "bottom of stack" symbol
Instantaneous Descriptions (IDs)

- For a FA, the only thing of interest is its state
- For a PDA, we want to know its state and the entire contents of its stack
- Represented by an ID \((q, w, \alpha)\), where
 - \(q\) = state
 - \(w\) = waiting input
 - \(\alpha\) = stack [top on left; bottom on right]

Moves of the PDA

- If \(\delta(q, a, X)\) contains \((p, \alpha)\), then
 \((q, aw, X\beta) \vdash (p, w, \alpha\beta)\)
 - Extend to \(\vdash^*\) to represent 0 or more moves
 - Can subscript with the name of the PDA for clarity
 - Input string \(w\) is accepted if \((q_0, w, \varepsilon) \vdash^* (p, \varepsilon, \varepsilon)\) for any accepting state \(p\)
 - \(L(P) = \text{set of strings accepted by } P\)

Acceptance by Empty Stack

- Another one of those technical conveniences:
 - when we prove that PDAs and CFGs accept the same languages, it helps to assume that the stack is empty whenever acceptance occurs
 - \(N(P) = \text{set of strings } w\text{ such that}\)
 \((q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon)\) for some state \(q\)
 - Note \(q\) need not be in \(F\)
 - In fact, if we talk about \(N(P)\) only, then we need not even specify a set of accepting states

Example

\((q_1, \text{aabb}, \varepsilon) \vdash (q_2, \text{aabb}, \$)\)
\((q_2, \text{abb}, \text{a}$)\)
\((q_2, \text{ab}, \text{aa}$)\)
\((q_2, \varepsilon, \$)\)
\((q_2, \varepsilon, \varepsilon)\)
Example

• For our previous example, to accept by empty stack:

 1. **Add a new transition** \(\delta(p, \varepsilon, Z_0) = \{(p, \varepsilon)\} \)
 - That is, when starting to look for a new \(a-b\) block, the PDA has the option to pop the last symbol off the stack instead

 2. \(p\) is no longer an accepting state, in fact, there are **no accepting states**

Palindromes

Input:

\[aaabcbaaa \]

Palindromes

Input:

\[aaabcbaaa \]
Palindromes

Input: aaabcbaaa

Input: aaabcbaaa

Input: aaabcbaaa

Input: aaabcbaaa
Palindromes

Input: aaabcbaaa

Palindromes

Input: aaabcbaaa
PDA Exercise

The idea is to use the stack to keep count of the number of as and/or bs needed to get a valid string.

If we have a surplus of bs thus far, we should have corresponding number of as (two for every b) on the stack.

On the other hand, if we have a surplus of as, we cannot put bs on the stack since we can’t split symbols. So instead, put two “negative” a-symbols, where a negative a will be denoted by capital A.

Input:

`aaabcbaaa`

ACCEPT!

\[L = \{ x \in \{a,b\}^* \mid n_a(x) = 2n_b(x) \} \]
Another PDA Exercise

Draw the PDA acceptor for

\[L = \{ a^ib^jc^k \mid i = j + k \} \]

Equivalence of Acceptance by Final State and Empty Stack

- A language is \(L(P_1) \) for some PDA \(P_1 \) if and only if it is \(N(P_2) \) for some PDA \(P_2 \).
- Can show with constructive proofs
Final State ⇒ Empty Stack

Given \(P_1 = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \), construct \(P_2 \):

1. Introduce new start state \(p_0 \) and new bottom-of-stack marker \(X_0 \).
2. First move of \(P_2 \): replace \(X_0 \) by \(Z_0X_0 \) and go to state \(q_0 \). The presence of \(X_0 \) prevents \(P_2 \) from “accidentally” emptying its stack and accepting when \(P_1 \) did not accept.
3. Then, \(P_2 \) simulates \(P_1 \), i.e., give \(P_2 \) all the transitions of \(P_1 \).
4. Introduce a new state \(r \) that keeps popping the stack of \(P_2 \) until it is empty.
5. If (the simulated) \(P_1 \) is in an accepting state, give \(P_2 \) the additional choice of going to state \(r \) on \(\varepsilon \) input, and thus emptying its stack without reading any more input.

Empty Stack ⇒ Final State

Given \(P_2 = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \), construct \(P_1 \):

1. Introduce new start state \(p_0 \) and new bottom-of-stack marker \(X_0 \).
2. First move of \(P_1 \): replace \(X_0 \) by \(Z_0X_0 \) and go to state \(q_0 \). Then, \(P_2 \) simulates \(P_1 \), i.e., give \(P_2 \) all the transitions of \(P_1 \).
3. Introduce a new state \(r \) for \(P_1 \), it is the only accepting state
4. \(P_1 \) simulates \(P_2 \)
5. If (the simulated) \(P_1 \) ever sees \(X_0 \) it knows \(P_2 \) accepts so \(P_1 \) goes to state \(r \) on \(\varepsilon \) input

Deterministic PDAs

- The PDAs we are dealing with are almost invariably non-deterministic
- A DPDA never has a choice of move
 - \(\delta(q, a, Z) \) has at most one member for any \(q, a, Z \) (including \(a = \varepsilon \)).
 - If \(\delta(q, \varepsilon, Z) \) is nonempty, then \(\delta(q, a, Z) \) must be empty for all input symbols \(a \)
- Why care?
 - Parsers are DPDAs
 - Thus, the question of what languages a DPDA can accept is really the question of what programming language syntax can be parsed conveniently

Non-deterministic PDAs

- A non-deterministic PDA allows non-deterministic transitions (e.g., defines multiple possible moves for a given configuration)
- Nondeterministic PDAs are strictly stronger than deterministic PDAs
- In this respect, the situation is not similar to the situation of DFAs and NFAs
- Non-deterministic PDAs are equivalent to CFLs
Real compilers

- However, unambiguous, deterministic CFGs are complicated and too restricted
- **Real parsers cheat by looking ahead one token**
 - This places certain restrictions on the grammar, but not as many
 - **STAY TUNED**: Learn about LL(1) and LR(1) grammars in CMPU 331
 - Some ambiguities (e.g. dangling else) are easily handled with one token lookahead

Equivalence of Parse Trees, Leftmost, and Rightmost Derivations

- The following about a grammar $G = (V, \Sigma, P, S)$ and a terminal string w are all equivalent:
 1. $S \Rightarrow^* w$ (i.e., w is in $L(G)$).
 2. $S \Rightarrow^* w$
 3. $S \Rightarrow_{lm}^* w$
 4. There is a parse tree for G with root S and yield (labels of leaves, from the left) w.
- Obviously (2) and (3) each imply (1).

Parse Tree Implies LM/RM Derivations

- Generalize all statements to talk about an arbitrary variable A in place of S.
 - Except now (1) no longer means w is in $L(G)$.
- Induction on the height of the parse tree.
- **Basis**: Height 1: Tree is root A and leaves $w = a_1, a_2, \ldots, a_k$.
- $A \Rightarrow_{lm}^* w$ must be a production, so $A \Rightarrow_{lm}^* w$ and $A \Rightarrow w$.
Induction: Height > 1: Tree is root A with children = \(X_1, X_2, \ldots, X_k\).

Those \(X_i\)'s that are variables are roots of shorter trees.

- Thus, the IH says that they have LM derivations of their yields.

- **Construct a LM derivation of** \(w\) **from** \(A\) **by starting** with \(\frac{A \rightarrow^*}{lm} X_1X_2 \ldots X_k\), then using LM derivations from each \(X_i\) that is a variable, in order from the left.

- **RM derivation analogous.**

Example

- Consider derivation \(S \Rightarrow AS \Rightarrow AAS \Rightarrow AA\)
 \(\Rightarrow A1A \Rightarrow A10A1 \Rightarrow 0110A1 \Rightarrow 0110011\)
- Sub-derivation from \(A\) is: \(A \Rightarrow A1 \Rightarrow 011\)
- Sub-derivation from \(S\) is: \(S \Rightarrow AS \Rightarrow A \Rightarrow 0A1 \Rightarrow 0011\)
- Each has a parse tree, put them together with new root \(S\).

Derivations to Parse Trees

- Induction on length of the derivation.
- **Basis:** One step. There is an obvious parse tree.
- **Induction:** More than one step.
 - Let the first step be \(A \Rightarrow X_1X_2 \ldots X_k\).
 - Subsequent changes can be reordered so that all changes to \(X_i\) and the sentential forms that replace it are done first, then those for \(X_j\) and so on (i.e., we can rewrite the derivation as a LM derivation).
 - The derivations from those \(X_i\)s that are variables are all shorter than the given derivation, so the IH applies.
 - By the IH, there are parse trees for each of these derivations.
 - Make the roots of these trees be children of a new root labeled \(A\).

Only-If Proof (i.e., Grammar \(\Rightarrow\) PDA)

- Prove by induction on the number of steps in the leftmost derivation \(S \Rightarrow^* \alpha\) that for any \(x, (q, wx, S) \vdash^* (q, x, \beta)\), where
 1. \(w\beta = \alpha\)
 2. \(\beta\) is the suffix of \(\alpha\) that begins at the leftmost variable (\(\beta = \varepsilon\) if there is no variable).
- Also prove the converse, that if \((q, wx, S) \vdash^* (q, x, \beta)\) then \(S \Rightarrow w\beta\).
- Inductive proofs in book.
- As a consequence, if \(y\) is a terminal string, then \(S \Rightarrow^* y\) iff \((q, y, S) \vdash^* (q, \varepsilon, \varepsilon)\), i.e., \(y\) is in \(L(G)\) iff \(y\) is in \(N(A)\).