Equivalence of CFGs and PDAs

A language is context free if and only if some pushdown automaton recognizes it

- As usual with “if and only if” theorems, there are two directions to prove
 - If a language is context free, then some pushdown automaton recognizes it
 - If a pushdown automaton recognizes some language, then it is context free

Only If (CFG to PDA)

- Let $L = L(G)$ for some CFG $G = (V, \Sigma, P, S)$
- Idea: have PDA A simulate leftmost derivations in G, where a left-sentential form (LSF) is represented by:
 1. The sequence of input symbols that A has consumed from its input, followed by...
 2. As stack, top left-most

Example: If $(q, abcd, S) \not\xrightarrow{*} (q, cd, ABC)$, then the LSF represented is $abABC$

Moves of A

- Place $\$ and the start variable on the stack
- Repeat:
 - If a terminal a is on top of the stack, then if the string is in the language there will be an a waiting on the input. A consumes a from the input and pops it from the stack
 - The LSF represented doesn’t change!
 - If a variable B is on top of the stack, then PDA A has a choice of replacing B on the stack by the body of any production with head B
 - Non-deterministic!
 - If $\$ is on top of the stack, enter the accept state and accept if all input has been read

Notation

$(r, xyz) \in \delta(q, a, s)$

- When
 - q is the current state
 - a is the next input symbol
 - s is on the top of the stack
- Do the following:
 - Read a
 - Pop s
 - Push xyz
Defining the PDA

- Define PDA A as follows:
 - $Q = \{q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}\} \cup E$
 - E is the set of states needed to implement the notation
 - q_{loop} is the start state
 - Σ contains the terminal symbols of the grammar
 - Γ contains all terminal and non-terminal symbols from the grammar
 - $F = \{q_{\text{accept}}\}$

- d is defined as follows:
 - For each production $X \rightarrow a$ in the grammar, create a move $d(q_{\text{loop}}, e, X) = (q_{\text{loop}}, a)$
 - For each terminal symbol a in the grammar, create a move $d(q_{\text{loop}}, a, a) = (q_{\text{loop}}, e)$
 - To handle $\$$ on the top of the stack, create a move $d(q_{\text{loop}}, e, \$$) = (q_{\text{accept}}, e)$

Example

$S \rightarrow a \mid aS \mid bSS \mid SSb \mid SbS$

PDA $A = (\{q_{\text{start}}, q_{\text{accept}}, q_{\text{loop}}, dirt\}, \{a, b\}, \{S, a, b\}, \delta, q_{\text{start}}, q_{\text{accept}}, 5)$

δ is defined as

$\delta(q_{\text{start}}, e, \$) = (q_{\text{loop}}, S)$

$\delta(q_{\text{loop}}, e, S) = \{(q_{\text{loop}}, a), (q_{\text{loop}}, aS), (q_{\text{loop}}, bSS), (q_{\text{loop}}, SSb)\}$

$\delta(q_{\text{loop}}, a, a) = (q_{\text{loop}}, d)$

$\delta(q_{\text{loop}}, b, b) = (q_{\text{loop}}, d)$

$\delta(q_{\text{loop}}, e, \$) = (q_{\text{accept}}, d)$

Processing of baa

<table>
<thead>
<tr>
<th>state</th>
<th>input</th>
<th>stack</th>
<th>move</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{start}</td>
<td>baa</td>
<td>-</td>
<td>$d(q_{\text{loop}}, e, baa) = (q_{\text{loop}}, S)$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>baa</td>
<td>SS</td>
<td>$d(q_{\text{loop}}, e, S) = (q_{\text{loop}}, bSS)$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>aa</td>
<td>SSS</td>
<td>$d(q_{\text{loop}}, e, a) = (q_{\text{loop}}, d)$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>aa</td>
<td>aS</td>
<td>$d(q_{\text{loop}}, e, a) = (q_{\text{loop}}, d)$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>a</td>
<td>S</td>
<td>$d(q_{\text{loop}}, e, a) = (q_{\text{loop}}, d)$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>e</td>
<td>-</td>
<td>$d(q_{\text{loop}}, e, $) = (q_{\text{accept}}, d)$</td>
</tr>
<tr>
<td>q_{accept}</td>
<td>-</td>
<td>-</td>
<td>- accept -</td>
</tr>
</tbody>
</table>

Input: $b\ a\ a$

Try it

$R \rightarrow XRX \mid S$

$S \rightarrow aTa \mid bTa$

$T \rightarrow XTX \mid X \mid \epsilon$

$X \rightarrow a \mid b$
The PDA

\[N = \{(q_{start}, q_{accept}, q_{loop}), \{a, b\}, \{a, b, R, S, T, X\}, \delta, q_{start}, q_{accept}, R\} \]

\[P = \delta(q_{start}, a, \varepsilon) = \{q_{loop}, R\} \]
\[\delta(q_{loop}, a, \varepsilon, R) = \{q_{loop}, XRX, (q_{loop}, S)\} \]
\[\delta(q_{loop}, a, T) = \{(q_{loop}, XTX, (q_{loop}, X), (q_{loop}, \varepsilon)\} \]
\[\delta(q_{loop}, a, X) = \{(q_{loop}, a), (q_{loop}, b)\} \]
\[\delta(q_{loop}, a, a) = (q_{loop}, \varepsilon) \]
\[\delta(q_{loop}, b, b) = (q_{loop}, \varepsilon) \]
\[\delta(q_{loop}, a, \varepsilon) = (q_{accept}, \varepsilon) \]

Using the PDA

Using the PDA

Using the PDA
Converting from PDA to CFG

- A PDA *consumes* a character
- A CFG *generates* a character
- We want to relate these two
- What happens when a PDA consumes a character?
 - It may change state
 - It may change the stack

PDA to CFG

- Assume $L = N(P)$, where $P = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}})$,
 - q_{accept} is empty (accept by empty stack)
 - Start variable is $A_{q_{\text{start}}}q_{\text{accept}}$
- Key idea: units of PDA action have the net effect of popping one symbol from the stack, consuming some input, and making a state change
- The CFG variable $A_{q,p}$ generates exactly those strings w such that P can read w from the input, pop one symbol from the stack, and go from state q to state p
 - More precisely, $(q, w, Z) \not\rightarrow (p, \varepsilon, \varepsilon)$
 - As a consequence of above, $(q, wx, Z\alpha) \not\rightarrow (p, x, \alpha)$ for any x and α

Converting from PDA to CFG

- Suppose X is on the stack and a is read
- What can happen to X?
 - It can be popped
 - It may be replaced by one or more other stack symbols
 - And so on…
 - The stack grows and shrinks and grows and shrinks…
 - Eventually, as more input is consumed, X must be popped (or we’ll never reach an empty stack)
 - And the state may change many times
 - We must track all of this!

It’s a Zen thing

$A_{q,p}$ is at once a variable involving states and symbols of P, and yet to the CFG we construct, it is a single, indivisible object

(OK, I know that’s not a Zen thing, but you get the point)